ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第2期
<返回第2期

基于响应曲面法的脱硫石膏基胶凝材料体系配比优化 

Optimization of proportioning of desulfurized gypsum based cementitious material system based on response surface methodology

刘凤利1,张安康1,刘俊华2,王 甜1

(1, 河南大学 循环与功能建材实验室,河南 开封 475004;2. 开封大学 土木建筑工程学院,河南 开封 475004)


DOI:10.13732/j.issn.1008-5548.2023.02.003

收稿日期:2022-09-22,修回日期:2022-10-27,在线出版时间:2023-01-11 08:49。

基金项目:河南省科技攻关项目,编号:212102310565;河南省高等学校重点科研项目,编号:21B560008;固废资源化利用与节能建材国家重点实验室开放基金资助项目,编号:SWR-2020-007。

第一作者简介:刘凤利(1978—),女,副教授,博士,硕士生导师,研究方向为绿色、节能建筑材料。E-mail:lfl@henu.edu.cn。


摘要:为了改善脱硫石膏基胶凝材料强度低的缺点,实现脱硫石膏高值化利用,基于响应曲面法进行改性脱硫石膏复合体系优化设计。以生石灰粉煤灰水泥为改性剂,部分取代脱硫建筑石膏,制备改性脱硫石膏胶凝体系,研究不同改性剂及交互作用对复合胶凝材料1、 28 d抗压强度的影响,建立响应面预测模型,并进行试验验证。结果表明:不同改性剂质量分数分别为生石灰5.53%、粉煤灰9.17%、水泥15.32%时,复合材料性能最优。该配比下,复合材料1、 28 d抗压强度分别为5.50、 20.30 MPa,较纯脱硫石膏体系分别提高48.65%和67.77%。实测值与预测值偏差仅为0.90%和0.74%,表明响应曲面法预测精度高,方法可行。

关键词:脱硫石膏;响应曲面法;抗压强度;最优配比

Abstract:In order to improve the low strength of desulfurized gypsum based cementitious material and realize the high-value utilization of desulfurized gypsum, based on response surface method, the optimization of modified desulfurized gypsum composite system was designed. Modified desulfurized gypsum cementitious system was prepared by using quicklime-fly ash-cement as modifier, partially replacing desulfurized building gypsum, the effects of different modifiers and their interactions on the 1 d and 28 d compressive strength of the composite cementitious materials were studied. The predictive pattern of response surface was established, and checked by trial. The outcomes indicate that when the mass ratio of different modifiers is 5.53% of quicklime, 9.17% of fly ash and 15.32% of cement, the performance of the composite is the best. Under this ratio, the 1 d and 28 d compressive strength of the composite are 5.50 MPa and 20.30 MPa respectively, which is 48.65% and 67.77% higher than the pure desulfurized gypsum system. The error of practical and predicted value is only 0.90% and 0.74%, which shows that the forecast of response surface method is exact, and the way is practicable.

Keywords:desulfurized gypsum; response surface methodology; compressive strength; optimal proportion


参考文献(References):

[1]WU S, WANG W L, REN C Z, et al.Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source[J].Construction and Building Materials, 2019, 228: 116676.

[2]闫友静, 张贺, 于世峰.脱硫石膏煅烧工艺及煅烧设备浅析[J].新型建筑材料, 2018, 45(2): 100-102.

[3]何廷树, 亢泽千, 陈畅.甲基硅酸钠对脱硫石膏砌块耐水性能的影响[J].建筑材料学报, 2021, 24(2): 247-253,259.

[4]施鑫, 荣传新, 王彬, 等.改性脱硫石膏基混凝土物理力学性能试验研究[J].科学技术与工程, 2018, 18(21): 288-293.

[5]付建.硅酸盐水泥对建筑石膏强度和耐水性的影响[J].非金属矿, 2019, 42(5): 39-41.

[6]彭红, 吕忠, 姜涛.脱硫建筑石膏-水泥复合胶凝材料制备及性能[J].土木工程与管理学报, 2020, 37(6): 38-43.

[7]杨磊, 井敏, 宋海霞.脱硫建筑石膏耐水性能研究[J].硅酸盐通报, 2016, 35(9): 2787-2792.

[8]李洁, 张付奇, 李刚, 等.生石灰对粉煤灰-石膏复合材料的改性研究[J].非金属矿, 2016, 39(5): 52-54.

[9]GONG Y F, SONG J X, LIN S Y, et al.Design optimization of rubber-basalt fiber-modified concrete mix ratios based on a response surface method[J].Applied Sciences, 2020, 10(19): 6753-6753.

[10]MOHAMMED B S, ACHARA B E, LIEW M S.The influence of high temperature on microstructural damage and residual properties of nano-silica-modified(NS-modified)self-consolidating engineering cementitious composites(SC-ECC)using response surface methodology(RSM)[J].Construction and Building Materials, 2018, 192: 450-466.

[11]周亚超.EPS/石膏轻质保温墙体材料的制备与性能研究[D].开封: 河南大学, 2020.

[12]YANG L, JING M, LU L C, et al.Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials[J].Construction and Building Materials, 2020, 257: 119519.

[13]ZHOU Y S, XIE L, KONG D W, et al.Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method[J].Construction and Building Materials, 2022, 341.

[14]WANSOM S, CHINTASONGKRO P, SRIJAMPAN W.Water resistant blended cements containing flue-gas desulfurization gypsum, Portland cement and fly ash for structural applications[J].Cement and Concrete Composites, 2019, 103: 134-148.

[15]江嘉运, 毕菲, 肖姗姗.石膏基复合胶凝材料的物理力学性能研究[J].硅酸盐通报, 2017, 36(11): 7.

[16]张付奇, 李刚, 李洁, 等.复合硅酸盐水泥改善石膏材料耐水性能研究[J].非金属矿, 2016, 39(2): 17-19.

[17]WU Q S, MA H E, CHEN Q J, et al.Preparation of waterproof block by silicate clinker modified FGD gypsum[J].Construction and Building Materials, 2019, 214: 318-325.

[18]黄中怡, 尹健, 马琦, 等.石膏基复合材料改性研究[J].非金属矿, 2022, 45(3): 45-50.

[19]罗双, 付汝宾, 孔德文, 等.掺合料对磷石膏基复合胶凝材料耐水性及强度的影响综述[J].无机盐工业, 2020, 52(11): 6.

[20]ZHANG S Y, ZHAO Y L, DING H X, et al.Recycling flue gas desulfurisation gypsum and phosphogypsum for cemented paste backfill and its acid resistance[J].Construction and Building Materials, 2021, 275: 122170.

[21]耿飞, 桂敬能, 曹欣欣, 等.脱硫石膏基复合胶凝材料的物理力学性能试验[J].南京航空航天大学学报, 2019, 51(1): 124-130.

[22]白锡庆, 李赵相, 马辉, 等.利用脱硫石膏制备石膏基胶凝材料砌块的研究[J].非金属矿, 2016, 39(1): 61-64.

[23]张翔, 何廷树, 何娟.硅酸盐水泥-粉煤灰-脱硫石膏复合材料的性能研究[J].硅酸盐通报, 2014, 33(4): 796-799.