高 丽1,2,3,许雪冰2,3,胡超权2,3,钟 杰2,3,4,孙林兵1
(1. 南京工业大学 化工学院,江苏 南京 211816;2.中国科学院 过程工程研究所;多相复杂系统国家重点实验室,北京 100190;3.中科南京绿色制造产业创新研究院,江苏 南京 211135;4.首都师范大学 化学系,北京 100048)
DOI:10.13732/j.issn.1008-5548.2023.02.001
收稿日期:2022-09-19,修回日期:2022-11-04,在线出版时间:2023-01-31 17:44。
基金项目:国家自然科学基金项目,编号:22078328。
第一作者简介:高丽(1997—),女,硕士研究生,研究方向为电催化。E-mail:1325891245@qq.com。
通信作者简介:胡超权(1981—),男,研究员,博士,博士生导师,研究方向为含碳可再生资源的利用及催化转化。E-mail:cqhu@ipe.ac.cn。孙林兵(1980—),男,教授,博士,博士生导师,研究方向为多孔材料。E-mail:lbsun@njtech.edu.cn。
摘要:以氮掺杂科琴黑(N-KB)为载体,采用浸渍还原法合成铂锰合金催化剂(Pt-Mn-N-KB)。通过透射电子显微镜、 X射线衍射仪、比表面测定仪和X射线光电子能谱等对催化剂的形貌、结构和表面组成等进行表征,并对催化剂在中性和碱性电解液中的氧还原性能进行测试。结果表明:Pt-Mn-N-KB催化剂上的Pt-Mn颗粒分散均匀且无团聚现象,平均粒径为1.6 nm。Pt-Mn-N-KB催化剂在碱性电解液中表现出的半波电位为0.884 V,起始电位接近1.01 V,在中性电解液中表现出的半波电位为0.686 V,起始电位为0.83 V,均优于商业铂碳Pt-C的。作为空气阴极应用于铝空气电池,在碱性电解液中表现出的超高功率密度为117.29 mW/cm2,在中性电解液中的为25.65 mW/cm2(中性),相对于商业铂碳Pt-C的分别提高32%和28%
关键词:氧还原反应;铂基催化剂;铝空气电池;催化活性;功率密度
Abstract:A platinum-manganese alloy catalyst(Pt-Mn-N-KB) was synthesized by an impregnation reduction method using nitrogen-doped ketjenblack(N-KB) as the carrier. The morphology, structure, and surface composition of the catalysts were characterized by transmission electron microscopy(TEM), X-ray diffractometer(XRD), specific surface area, and X-ray photoelectron spectroscopy(XPS). The catalytic performances of the catalyst towards oxygen reduction in alkaline and neutral solutions were investigated. The results show that the Pt-Mn-N-KB catalyst exhibiting an uniform dispersion of Pt-Mn particles with an average size of 1.6 nm. A half-wave potential of 0.884 and an onset potential close to 1.01 V(vs. RHE) in alkaline solution were achieved. The corresponding values decreased to 0.686 and 0.83 V(vs. RHE), respectively, when the catalyst were tested in neutral solution. In both cases, the Pt-Mn-N-KB catalyst displayed better performances for oxygen redution reaction than the commercial Pt-C catalyst. When applying as the air cathode in an aluminum-air cell, the catalyst exhibited ultra-high power densities of 117.29(alkaline) and 25.65 mW/cm2(neutral). Compared with those of the commercial Pt-C catalyst, the power densities increased by 32% and 28%, respectively.
Keywords:oxygen reduction reaction; platinum-based catalyst; aluminum-air cell; activity; power density;
参考文献(References):
[1]尹连琨, 张岩松, 于佳鑫, 等.铝空气电池用Ag@Cu(2+1)O/MWNTs氧还原催化剂的制备和电催化性能[J].粉末冶金材料科学与工程, 2022, 27(3): 284-293.
[2]SUN J, GUO N K, SHAO Z Y, et al.A facile strategy to construct amorphous spinel-based electrocatalysts with aassive oxygen vacancies using ionic liquid dopant[J].Advanced Energy Materials, 2018, 8(27): 1800980.
[3]薛培华, 于洁玫, 黄太仲, 等.氧化石墨烯原位合成VC及其负载Pt氧还原催化性能[J].中国粉体技术, 2017, 23(2): 54-61.
[4]WANG Z H, JIN H H, TIAN M, et al.Fe, Cu-coordinated ZIF-derived carbon framework for efficient xygen reduction reaction and zinc-air batteries[J].Advanced Functional Materials, 2018, 28: 1802596.
[5]SINGH S K, TAKEYASU K, Nakamura J.Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials[J].Advanced Materials, 2019, 31(13): 1804291-1804297.
[6]SHI Y H, YANG W, GONG W B, et al.Interconnected surface-vacancy-rich PtFe nanowires for efficient oxygen reduction[J].Journal of Materials Chemistry A, 2021, 9: 12845-12852.
[7]ZHANG G R, WOELLNER S, et al.Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions[J].Applied Catalysis B: Environmental, 2018, 222: 26-34.
[8]GOCYLA M, KUEHL S, SHVIRO M, et al.Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy[J].ACS Nano, 2018, 12: 5306-5311.
[9]YIN X, YAO Y, DISALVO F J, et al.Synergistic bimetallic metallic organic framework-derived Pt-Co oxygen reduction electrocatalysts[J].ACS Nano, 2020, 14(10): 13069-13080.
[10]YING J, JIANG G P, CANO P Z, et al.Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction[J].Applied Catalysis B: Environmental, 2018, 236: 359-367.
[11]FU X H, LIU Y X, DENG J G, et al.Intermetallic compound PtMny-derived Pt-MnOx supported on mesoporous CeO2: highly efficient catalysts for the combustion of toluene[J].Applied Catalysis A: General, 2020, 595: 117509.
[12]LIM J H, JUNG C W, HONG D S, et al.Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells[J].Journal of Materials Chemistry A, 2022, 10(13): 7399-7408.
[13]LIM S Y, KIM S L, LEE M S, et al.Effect of uniformity and surface morphology of Pt nanoparticles to enhance oxygen reduction reaction in polymer electrolyte membrane fuel cells[J].International Journal of Hydrogen Energy, 2022, 47: 29456-29466.
[14]MELKE J, PETER B, HABEREDER A, et al.Metal-support interactions of platinum nanoparticles decorated N-doped carbon nanofibers for the oxygen reduction reaction.[J].ACS Applied Materials & Interfaces, 2016, 8: 82-90.
[15]XIONG B, ZHOU Y, ZHAO Y, et al.The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation[J].Carbon, 2013, 52: 181-192.
[16]PRITHI J A, RAJALAKSHMI N, RAO G R.Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 2017, 43(9): 4716-4725.
[17]GALEANO C, MEIER J C, SOORHOLTZ M, et al.Nitrogen-doped hollow carbon spheres as a support for platinum-based electrocatalysts[J].Acs Catalysis, 2014, 4(11): 3856-3868.
[18]WEI H, SHEN X R, WANG J, et al.High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance[J].Chinese Journal of Chemical Engineering, 2022, 48: 30-35.
[19]FAN M L, PAN X C, LIN W R, et al.Carbon-covered hollow nitrogen-doped carbon nanoparticles and nitrogen-doped carbon-covered hollow carbon nanoparticles for oxygen reduction[J].ACS Applied Energy Materials, 2020, 3: 3487-3493.
[20]SUBRAMANIAN N P, LI X G, NALLATHAMBI V, et al.Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J].Journal of Power Sources, 2009, 188(1): 38-44.
[21]FENG Z, CRUMLIN E J, HONG W T, et al.In situ studies of the temperature-dependent surface structure and chemistry of single-crystalline(001)-oriented La0.8Sr0.2CoO3-δ perovskite thin films[J].The Journal of Physical Chemistry Letters, 2013, 4: 1512-1518.
[22]ZHOU Y K, NEYERLIN K, OLSON T S, et al.Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports[J].Energy & Environmental Science, 2010, 3(10): 1437-1446.
[23]HAO M G, DUN R M, SU Y M, et al.Highly active Fe-N-doped porous hollow carbon nanospheres as oxygen reduction electrocatalysts in both acidic and alkaline media[J].Nanoscale, 2020, 12: 15115-15127.