ISSN 1008-5548

CN 37-1316/TU

最新出版

纳米颗粒粒径、形貌及高体积分数颗粒粒径测量

Measurement of nanoparticle size, morphology, and high concentration


刘泽奇1,2,仪显亨1,蔡天意1,蔡小舒1,2

1. 上海理工大学 能源与动力工程学院,上海 200093;2. 嘉兴美帕克仪器科技有限公司,浙江 嘉兴 314200


引用格式:

刘泽奇,仪显亨,蔡天意,等. 纳米颗粒粒径、形貌及高浓度测量[J]. 中国粉体技术,2025,31(1):1-12.

LIUZeqi, YI Xianheng, CAI Tianyi, et al. Measurement of nanoparticle size, morphology, and high concentration[J]. China Powder Science and Technology,2025,31(1):1−12.

DOI:10.13732/j.issn.1008-5548.2025.01.011

收稿日期:2024-06-17,修回日期:2024-10-10,上线日期:2024-11-28。

基金项目:国家自然科学基金项目,编号:52376163。

第一作者简介:刘泽奇(1995—),男,硕士生,研究方向为纳米颗粒粒径测量。E-mail:695207333@qq. com。

通信作者简介:蔡小舒(1955—),男,教授,博士,博士生导师,研究方向为颗粒测量等。E-mail:usst_caixs@163. com。


摘要:【目的】 准确、快速测量纳米颗粒的粒径、形貌,同时避免颗粒体积分数过高对测量结果的影响。【方法】 采用3种新的纳米颗粒测量方法:图像动态光散射法、偏振图像动态光散射法、高体积分数纳米颗粒 180°光纤后向动态光散射法,分别快速测量纳米颗粒的粒径及分布、形貌及分布、高体积分数纳米颗粒的粒径;利用基于不同测量方法研制的3种仪器测量多种纳米颗粒,包括球形、非球形和工业纳米颗粒样品。【结果】 图像动态光散射法可以快速准确地测量纳米颗粒的粒径;光纤后向动态光散射法可以测量体积分数高达20%的纳米颗粒粒径;对于非球形纳米颗粒,采用光学球体度表征颗粒形貌,偏振图像动态光散射法可以快速测出颗粒的光学球体度和光学球体度分布,用于表征被测颗粒偏离球体的程度,以及非球形纳米颗粒形貌的一致性;非球形颗粒形状偏离球体越远,光学球体度值越小,光学球体度分布越窄,表明非球形纳米颗粒的形貌越均匀。【结论】 使用这3种纳米颗粒测量仪器可以实现纳米颗粒粒径的实时测量、纳米颗粒的形貌测量以及高体积分数纳米颗粒的在线测量,可以应用于药物生产的实时监测、化学样品的工艺分析、磨料颗粒的性能评估等方面。

关键词:纳米颗粒;粒径分布;形貌分布;多次散射;动态光散射

Abstract

Objective The properties and applications of nanoparticles are closely related to their size, morphology, and the concentration of the dispersion system. The main methods for measuring nanoparticle size include various typesof electron microscopy and dynamic light scattering (DLS). Nanoparticle morphology is typically measured using electron microscopy or atomic force microscopy (AFM). However, electron microscopy can only analyze a small number of samples at a time, requires complex and time-consuming sample preparation, and is unsuitable for online detection in industrial production. Compared to electron microscopy and AFM, DLS is a commonly used method for measuring nanoparticle size. It has the advantages of short measurement times, easy sample preparation, low cost, compact equipment, and ease of use. However, traditional DLS methodsare insufficient for real-time particle size measurement, particle morphology characterization, and in-situ online measurement of nanoparticles at high concentrations, highlighting the need to improve the DLS method.

Methods This paper introduced three newly developed methods for nanoparticle measurement: image-based dynamic light scattering (IDLS), polarized image-based dynamic light scattering (PIDLS), and 180° fiber-optic backward dynamic light scattering (FBDLS). These methods can quickly measure nanoparticle size, morphology, and their distributions, and can directly measure high-concentration nanoparticles. The paper also presented three instruments based on these methods, which could be used to measure a variety of nanoparticles, including spherical, non-spherical, and industrial nanoparticles.

Results and Discussion Results indicate that the IDLS method can quickly and accurately measure nanoparticle size, while the FBDLS method can measure the size of nanoparticles at concentrations as high as 20%. For non-spherical nanoparticles, the PIDLS method can obtain the optical sphericity, which characterizes the degree to which the particle shape deviates from a sphere, as well as the optical sphericity distribution, which characterizes the uniformity of the morphology of non-spherical nanoparticles. The farther the particle shape deviates from a sphere, the lower the optical sphericity value. A narrower optical sphericity distribution indicates more uniform morphology among non-spherical nanoparticles.

Conclusion Based on these three new nanoparticle measurement methods, the instruments developed in this study can quickly measure nanoparticle size, morphology, and their distributions, and directly measure high-concentration nanoparticles. These methods can be effectively applied to real-time monitoring in pharmaceutical production, process analysis of chemical samples,and performance evaluation of abrasive particles, among other applications.

Keywords:nanoparticle; particle size distribution; morphology distribution; high concentration; measurement; dynamic light scattering


参考文献(References)

[1]谭聪,刘洋,何莹,等. 不同粒径金属基纳米颗粒的性质与其环境行为和生物效应的关系[J]. 材料导报,2021,35(7):7121-7126.

TAN C,LIU Y, HE Y, et al. Relationships between the properties of metal-based nanoparticles with different particle sizes and their environmental behaviors and biological responses[J]. Materials Reports,2021,35(7):7121-7126.

[2]LI D Q, SONG H C, MENG X, et al. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2[J]. Nanomaterials,2020,10(3):546.

[3]顾卓明,顾彩香,陈志刚. 纳米粒子粒径的测量研究[J]. 理化检验(物理分册),2005,41(1):24-26,35.

GU Z M, GU C X, CHEN Z G. Study on particle size measurement of nanoparticles[J]. Physical Testingand Chemical Analysis Part A: Physical Testing,2005,41(1):24-26,35.

[4]张晋远,郑毅,朱瑞珍. 纳米体系粒度分布的 X 射线小角散射表征[J]. 现代科学仪器,2003(2):3-8.

ZHANG J Y, ZHENG Y, ZHU R Z. Characterization of particle size distribution of nanometer systemby small angle X-ray Scattering Method [J]. Journal of Modern Scientific Instruments,2003(2):3-8.

[5]HORISBERGER M, ROSSET J. Colloidal gold, a useful marker for transmission and scanning electron microscopy[J]. Journal of Histochemistry & Cytochemistry,1977,25(4):295-305.

[6]SPURGEON S R, OPHUS C, JONES L, et al. Towards data-driven next-generation transmission electron microscopy[J]. Nature Materials,2020,20(3):274-279.

[7]NGUYEN-TRI P, GHASSEMI P, CARRIERE P, et al. Recent applications of advanced atomic force microscopy in polymer science: a review[J]. Polymers(Basel),2020,12(5):1142.

[8]LOYA J R, LERMA M, GARDEA-TORRESDEY J L. Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: a review[J]. Micromachines,2023,15(1):24.

[9]蔡小舒,苏明旭,沈建琪. 颗粒粒度测量技术及应用[M]. 北京:化学工业出版社,2022:202-204.

CAI X S, SU M X, SHEN J Q. Particle size measurement technology and applications[M]. Beijing: Chemical Industry Press,2022:202-204.

[10]王志永,蔡小舒,徐呈泽,等. 动态光散射图像法测量纳米颗粒粒度研究[J]. 光学学报,2014,34(1):282-287.

WANG Z Y, CAI X S, XU C Z, et al. Nanoparticle sizing by image processing with dynamic light scattering[J]. Acta Optica Sinica,2014,34(1):282-287.

[11]ZHOU W, ZHANG J, LIU L, et al. Ultrafast image-based dynamic light scattering for nanoparticle sizing[J]. Review of Scientific Instruments,2015,86(11):115107.

[12]MISHCHENKO M I, HOVENIER J W, TRAVIS L D. Light scattering by nonspherical particles: theory, measurements,and applications[J]. Measurement Science and Technology,2000,11(12):1827-1827.

[13]WANG B Y, CAI T Y, CAI X S, et al. Polarized imaging dynamic light scattering for simultaneous measurement of nanoparticle size and morphology[J]. Particuology,2024,85:213-223.

[14]仪显亨,周骛,蔡小舒,等. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报,2023,74(8):3320-3328.

YI X H, ZHOU W, CAI X S, et al. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering[J]. Chinese Journal of Chemical Engineering,2023,74(8):3320-3328.

[15]刘丽丽,蔡小舒,张杰,等 . 一种纳米颗粒粒度测量的快速图像动态光散射法研究[J]. 光学学报,2015,35(5):369-375.

LIU L L, CAI X S, ZHANG J, et al. Research on a novel fast imaging dynamic light scattering method for nanoparticle size measurement[J]. Acta Optica Sinica,2015,35(5):369-375.