Keywords:iron nitride; controlled preparation; phase structure; Fischer−Tropsch synthesis
[1]ROMMENS K T, SAEYS M. Molecular views on Fischer−Tropsch synthesis[J]. Chemical Reviews,2023,123(9):5798−5858.
[2]HE Y M, MÜLLER F H, PALKOVITS R, et al. Tandem catalysis for CO2conversion to higher alcohols: a review[J]. Applied Catalysis B: Environment and Energy,2024,345:123663.
[3]LIN T J, AN Y L, YU F, et al. Advances in selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency[J]. ACS Catalysis,2022,12(19):12092−12112.
[4]KEUNECKE A, DOSSOW M, DIETERICH V, et al. Insights into Fischer-Tropsch catalysis: current perspectives, mechanisms, and emerging trends in energy research[J]. Frontiers in Energy Research,2024,12:1344179.
[5]ZHU Y F, XIE B Q, AMAL R, et al. Light-enhanced conversion of CO2 to light olefins: basis in thermal catalysis, current progress, and future prospects[J]. Small Structures,2023,4(6):2200285.
[6]CHEN Y P, WEI J T, DUYAR M S, et al. Carbon-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Society Reviews,2021,50(4):2337−2366.
[7]WANG D F, GU Y, CHEN Q Q, et al. Direct conversion of syngas to alpha olefins via Fischer-Tropsch synthesis: process development and comparative techno−economic−environmental analysis[J]. Energy,2023,263:125991.
[8]MA G Y, XU Y F, WANG J, et al. An Na-modified Fe@C core-shell catalyst for the enhanced production of gasoline-range hydrocarbons via Fischer-Tropsch synthesis[J]. RSC Advances,2020,10(18):10723−10730.
[9]MAZUROVA K, MIYASSAROVA A, ELISEEV O, et al. Fischer-Tropsch synthesis catalysts for selective production of diesel fraction[J]. Catalysts,2023,13(8):1215.
[10]LI Y H, ZHAO Z A, LU W, et al. Highly selective conversion of syngas to higher oxygenates over tandem catalysts[J]. ACSCatalysis,2021,11(24):14791−14802.
[11]WANG Q, HU K H, GAO R X, et al. Hydrogenation of carbon dioxide to value−added liquid fuels and aromatics over Febased catalysts based on the Fischer-Tropsch synthesis route[J]. Atmosphere,2022,13(8):1238.
[12]GHOGIA A C, NZIHOU A, SERP P, et al. Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: areview[J]. Applied Catalysis A: General,2021,609:117906.
[13]CHUN D H, RHIM G B, YOUN M H, et al. Brief review of precipitated iron-based catalysts for low-temperature FischerTropsch synthesis[J]. Topics in Catalysis,2020,63(9):793−809.
[14]WEBER J L, MARTÍNEZ DEL MONTE D, BEERTHUIS R, et al. Conversion of synthesis gas to aromatics at medium temperature with a Fischer-Tropsch and ZSM−5 dual catalyst bed[J]. Catalysis Today,2021,369:175−183.
[15]高辉,杜伟东,王爽,等. 神华宁煤煤制油项目变换工艺的选择与应用[J]. 氮肥与合成气,2021,49(5):22−25.
GAO H, DU W D, WANG S, et al. Selection and application of shift process in Shenhua Ningmei coal-to-oil project[J].
Nitrogenous Fertilizer & Syngas,2021,49(5):22−25.
[16]YOU Q, YAO Q G, SONG R X, et al. Multi-dimensional safety risk assessment on coal mines under the profitability dilemma[J]. Scientific Reports,2023,13(1):2687.
[17]ZHANG Y L, LI J J, TIAN Y J, et al. Virtual water flow associated with interprovicial coal transfer in China: impacts and suggestions for mitigation[J]. Journal of Cleaner Production,2021,289:125800.
[18]姚炜珊,侯雅磊,魏国强,等. 二氧化碳资源化利用研究进展[J]. 新能源进展,2024,12(2):182−192.
YAO W S, HOU Y L, WEI G Q, et al. Research progress of carbon dioxide resource utilization[J]. Advances in New and Renewable Energy,2024,12(2):182−192.
[19]CHAI J C, PESTMAN R, CHIANG F K, et al. Influence of carbon deposits on Fe-carbide for the Fischer-Tropsch reaction[J]. Journal of Catalysis,2022,416:289−300.
[20]LIU W Q, CHENG S F, MALHI H S, et al. Hydrogenation of CO2 to olefins over iron-based catalysts: a review[J]. Catalysts,2022,12(11):1432.
[21]CUI L R, LIU C, YAO B Z, et al. A review of catalytic hydrogenation of carbon dioxide: from waste to hydrocarbons[J].Frontiers in Chemistry,2022,10:1037997.
[22]ANDERSON R B. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties[J]. Catalysis Reviews,1980,21(1):53−71.
[23]BEILBY G T, HENDERSON G G. The action of ammonia on metals at high temperatures[J]. Journal of the Chemical Society, Faraday Transactions,1901,79:1245−1256.
[24]KIM T K, TAKAHASHI M. New magnetic material having ultrahigh magnetic moment[J]. Applied Physics Letters,1972,20(12):492−494.
[25]DOS SANTOS C A, DE BARROS B A S, DE SOUZA J P, et al. Iron nitride and carbonitride phases in a nitrogen implanted carbon steel[J]. 1982,41(3):237−239.
[26]GAO S, YANG S H, WANG H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbonbased nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438−444.
[27]GUO R D, SU D, CHEN F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces,2022,14(2):3084−3094.
[28]WANG L, YIN J, ZHAO L, et al. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst[J]. Chemical Communications,2013,49(29):3022−3024.
[29]QI W L, LIU S Q, LI F, et al. Prussian blue derived Fe2N for efficiently improving the photocatalytic hydrogen evolution activity of g−C3N4nanosheets[J]. Catalysis Science & Technology,2019,9(10):2571−2577.
[30]CAO M H, LIU T F, SUN G B, et al. Magnetic iron nitride nanodendrites[J]. Journal of Solid State Chemistry,2005,178(7):2390−2393.
[31]LI L G, QING M, LIU X W, et al. Efficient one-pot synthesis of higher alcohols from syngas catalyzed by iron nitrides[J].Chem Cat Chem,2020,12(7):1939−1943.
[32]ZHANG C Y, PENG X L, LI J, et al. Design, preparation, and magnetic properties of Fe4N/Fe3N soft magnetic composites fabricated by gas nitridation[J]. Journal of Superconductivity and Novel Magnetism,2023,36(3):923−929.
[33]李建敏,王群,郭红霞. 气体氮化法制备Fe4N超细粉末的工艺研究[J]. 硅酸盐通报,2008,27(5):1087−1090.
LI J M, WANG Q, GUO H X. Studies of Fe4N particles process obtained by nitrization of gas[J]. Bulletin of the Chinese Ceramic Society,2008,27(5):1087−1090.
[34]WANG C, ZHANG J, CHEN J G. Preparation of single-phase iron nitrides and investigation of their Fischer−Tropsch synthesis performance[J]. Chemistry Select,2020,5(13):3953−3958.
[35]刘思林,于英仪,滕荣厚,等. 诸因素对制备氮化铁磁性液体的影响[J]. 金属学报,1998,34(11):1223−1226.
LIU S L, YU Y Y, TENG R H, et al. The influence of several factors on the preparation of nitride iron magnetic fluid[J].Acta Metallrugica Sinica,1998,34(11):1223-1226.
[36]ZHAO N, WANG W, LEI X, et al. Synthesis, structure and magnetic properties of Fe3N nanoparticles[J]. Journal of Materials Science: Materials in Electronics,2017,28(20):15701−15707.
[37]HUNG T F, TU M H, TSAI C W, et al. Influence of pyrolysis temperature on oxygen reduction reaction activity of carbonincorporating iron nitride/nitrogen-doped graphene nanosheets catalyst[J]. International Journal of Hydrogen Energy,2013,38(10):3956−3962.
[38]ZHAO B H, SUN M Y, CHEN F P, et al. Unveiling the activity origin of iron nitride as catalytic material for efficient hydrogenation of CO2to C2+hydrocarbons[J]. Angewandte Chemie,2021,133(9):4546−4550.
[39]ZHANG Z K, LI D X, WANG J, et al. Cascade upcycling polystyrene waste into ethylbenzene over Fe2N@C[J]. Applied Catalysis B: Environmental,2023,323:122164.
[40]CUI X Q, LIANG X H, LIU W, et al. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C[J]. Chemical Engineering Journal,2020,381:122589.
[41]CUI X Q, LIANG X H, CHEN J B, et al. Customized unique core−shell Fe2N@N-doped carbon with tunable void space for microwave response[J]. Carbon,2020,156:49−57.
[42]LI Z, FANG Y J, ZHANG J T, et al. Necklace-like structures composed of Fe3N@C yolk−shell particles as an advancedanode for sodium-ion batteries[J]. Advanced Materials,2018,30(30):1800525.
[43]OTUN K O, LIU X Y, HILDEBRANDT D. Metal-organic framework (MOF)-derived catalysts for Fischer−Tropsch synthesis: recent progress and future perspectives[J]. Journal of Energy Chemistry,2020,51:230−245.
[44]MA S Y, HAN W G, HAN W L, et al. Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review[J]. Journal of Materials Chemistry A,2023,11(7):3315−3363.
[45]ANNAMALAI J, MURUGAN P, GANAPATHY D, et al. Synthesis of various dimensional metal organic frameworks(MOFs) and their hybrid composites for emerging applications:a review[J]. Chemosphere,2022,298:134184.
[46]王文敬, 董浩琪, 卢洁,等. 碳包裹氮化铁复合材料的制备及微波吸收性能[J]. 中国粉体技术,2024,30(3):39−50.
WANG W J, DONG H Q, LU J, et al. Preparation and microwave absorption properties of carbon-coated iron nitride composites[J]. China Powder Science and Technology,2024,30(3):39−50.
[47]YANG Z Q, GUO S J, PAN X L, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J]. Energy& Environmental Science,2011,4(11):4500−4503.
[48]LIU Z X, LIU H W, GAO Y J, et al. Carrier synergistic effect of iron based catalysts for CO hydrogenation to lower olefins[J]. Reaction Kinetics, Mechanisms and Catalysis,2024,137(2):879−896.
[49]TIAN Z P, WANG C G, SI Z, et al. Enhancement of light olefins selectivity over N-doped Fischer−Tropsch synthesis catalyst supported on activated carbon pretreated with KMnO[4 J]. Catalysts,2019,9(6):505.
[50]WANG C, ZHU H Q, ZHANG J, et al. Tuning Fischer−Tropsch synthesis product distribution toward light olefins over nitrided Fe−Mn bimetallic catalysts[J]. Fuel,2023,343:127977.
[51]HUMMEL A. Surface and bulk changes in iron nitride catalysts in H2/CO mixtures[J]. Journal of Catalysis,1988,113(1):236−249.
[52]YEH E, JAGGI N K, BUTT J B, et al. Silica-supported iron nitride in Fischer−Tropsch reactions characterization of the catalyst[J]. Journal of Catalysis,1985,91(2):231−240.
[53]FU X P, YU W Z, MA C, et al. Supported Fe2C catalysts originated from Fe2N phase and active for Fischer−Tropsch synthesis[J]. Applied Catalysis B: Environmental,2021,284:119702.
[54]QIAN F, BAI J W, CAI Y, et al. Stabilized ε−Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for hightemperature olefin synthesis[J]. Nature Communications,2024,15(1):5128.