ISSN 1008-5548

CN 37-1316/TU

最新出版

氮化铁的可控制备及在费托合成中的研究进展
Controlled preparation of iron nitride and its research progress in  Fischer-Tropsch synthesis

魏宇学1 ,王文敬1 ,王驰骏2 ,任明扬1 ,张 野1 ,何 东3 ,李明峻3 ,刘久逸1 ,张成华1 ,孙 松1

1. 安徽大学 化学化工学院,安徽 合肥 230601;2. 中国神华煤制油化工有限公司,北京 100011;

3. 芜湖赛宝信息产业技术研究院有限公司,安徽 芜湖 241003


引用格式:

魏宇学,王文敬,王驰骏,等. 氮化铁的可控制备及在费托合成中的研究进展[J]. 中国粉体技术,2025,31(1):1-11.

WEI Yuxue, WANG Wenjing, WANG Chijun, et al. Controlled preparation of iron nitride and its research progress in Fischer-Tropsch synthesis[J]. China Powder Science and Technology,2025,31(1):1-11.

DOI:10.13732/j.issn.1008-5548.2025.01.013

收稿日期:2024-07-25,修回日期:2024-09-19,上线日期:2024-10-13。

基金项目:国家自然科学基金项目,编号:21902001,22179001,22102001;安徽省高校杰出青年科研项目,编号:2022AH020007;安徽省高校协同创新项目,编号: GXXT-2023-009;安徽省高等学校自然科学基金项目,编号:2023AH050114

第一作者简介:魏宇学(1991—),女,副教授,博士,硕士生导师,研究方向为多相催化。E-mail:weiyuxue@ahu. edu. cn。

通信作者简介:孙松(1982—),男,教授,博士,博士生导师,安徽省百人计划(青年)获得者,研究方向为多相催化和化工新材料。Email:suns@ustc. edu. cn。



摘要:【目的】加速费托合成(Fischer-Tropsch process,FTS)催化剂的设计与开发,实现碳达峰碳中和目标,归纳总结氮化铁在FTS领域的研究进展。【研究现状】氮化铁的制备方法主要包括铁氧化物还原氮化法、铁盐氮化法和金属有机骨架材料氮化法等,氮化铁具有丰富的相结构、独特的易碳化结构特性和物理化学吸附特性,目前的研究集中于氮化铁相结构的调控,关于氮化铁形貌的可控制备研究较少;氮化铁在FTS反应中表现出优异的转化率和特定产物选择性,包括高碳醇(C2+OH)、低碳烯烃(C

2 =−C4 =)和高碳烃(C5+)等;氮化铁较宽的Fe—Fe原子间距有利于渗碳反应的发生,丰富的相结构有助于实现活性相组成、结构的调控。【结论与展望】氮化铁有望实现调控FTS反应活性和特定产物选择性的目的;借助原位表征手段和理论计算,进一步解析氮化铁催化剂的活性相结构,明确各相态的作用,在此基础上研究氮化铁的催化作用机制,对提高目标产物选择性具有重要意义。

关键词:氮化铁;可控制备;相结构;费托合成


Abstract

Significance Iron nitride holds great potential for further enhancing the performance of Fischer-Tropsch (FT) synthesis reactions due to its rich phase structure, unique carbonaceous characteristics, and favorable physicochemical adsorption properties.This paper reviews the research progress of iron nitride in FT synthesis. It facilitates the design and development of FT catalysts,contributing to the achievement of ‘carbon peaking’ and ‘carbon neutrality’.

Progress Common types of iron nitride include Fe2N, Fe3N, and Fe4N. The main preparation methods of iron nitride are iron oxide reduction nitriding, iron salt nitriding, and nitriding of metal-organic framework materials. The phase transformation of iron nitride is related to μN and temperature. As a catalyst for FTh synthesis, iron nitride primarily produces high-carbon hydrocarbons, low-carbon olefins, and high-carbon alcohols. The selectivity for low-carbon olefins in iron nitride catalysts can be improved by adding carriers and additives. Under FTh reaction conditions, the nitrogen atoms in iron nitride can exchange with carbon atoms, forming iron carbide. Studies have shown that iron carbide remains the active phase in FTh synthesis. Despite these advancements, achieving high activity in iron nitride catalysts and high selectivity of target products remains an important challenge that needs to be addressed.

Conclusions and Prospects This paper systematically reviews the preparation of iron nitride and summarizes the current research on iron nitride catalysts for CO hydrogenation to produce high-carbon alcohols, low-carbon olefins, and high-carbon hydrocarbons. However, most existing studies on iron nitride focus on catalytic performance, and there has been no systematic research on the active phase structure of iron nitride catalysts, the phase transformationprocess of iron nitride during FTh reactions, or the relationship between iron nitride, iron carbide, and their chemical environment. Additionally, due to the similarity in crystal structure parameters between iron nitride and iron carbide, and the dynamic evolution of the active phase structure under high-temperature and high-pressure reaction conditions, there is an urgent need to employ in-situ characterization techniques to reveal the phase evolution of iron nitride under reaction conditions and identify the active phase.

Keywords:iron nitride; controlled preparation; phase structure; Fischer−Tropsch synthesis


参考文献(References)

[1]ROMMENS K T, SAEYS M. Molecular views on Fischer−Tropsch synthesis[J]. Chemical Reviews,2023,123(9):5798−5858.

[2]HE Y M, MÜLLER F H, PALKOVITS R, et al. Tandem catalysis for CO2conversion to higher alcohols: a review[J]. Applied Catalysis B: Environment and Energy,2024,345:123663.

[3]LIN T J, AN Y L, YU F, et al. Advances in selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency[J]. ACS Catalysis,2022,12(19):12092−12112.

[4]KEUNECKE A, DOSSOW M, DIETERICH V, et al. Insights into Fischer-Tropsch catalysis: current perspectives, mechanisms, and emerging trends in energy research[J]. Frontiers in Energy Research,2024,12:1344179.

[5]ZHU Y F, XIE B Q, AMAL R, et al. Light-enhanced conversion of COto light olefins: basis in thermal catalysis, current progress, and future prospects[J]. Small Structures,2023,4(6):2200285.

[6]CHEN Y P, WEI J T, DUYAR M S, et al. Carbon-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Society Reviews,2021,50(4):2337−2366.

[7]WANG D F, GU Y, CHEN Q Q, et al. Direct conversion of syngas to alpha olefins via Fischer-Tropsch synthesis: process development and comparative techno−economic−environmental analysis[J]. Energy,2023,263:125991.

[8]MA G Y, XU Y F, WANG J, et al. An Na-modified Fe@C core-shell catalyst for the enhanced production of gasoline-range hydrocarbons via Fischer-Tropsch synthesis[J]. RSC Advances,2020,10(18):10723−10730.

[9]MAZUROVA K, MIYASSAROVA A, ELISEEV O, et al. Fischer-Tropsch synthesis catalysts for selective production of diesel fraction[J]. Catalysts,2023,13(8):1215.

[10]LI Y H, ZHAO Z A, LU W, et al. Highly selective conversion of syngas to higher oxygenates over tandem catalysts[J]. ACSCatalysis,2021,11(24):14791−14802.

[11]WANG Q, HU K H, GAO R X, et al. Hydrogenation of carbon dioxide to value−added liquid fuels and aromatics over Febased catalysts based on the Fischer-Tropsch synthesis route[J]. Atmosphere,2022,13(8):1238.

[12]GHOGIA A C, NZIHOU A, SERP P, et al. Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: areview[J]. Applied Catalysis A: General,2021,609:117906.

[13]CHUN D H, RHIM G B, YOUN M H, et al. Brief review of precipitated iron-based catalysts for low-temperature FischerTropsch synthesis[J]. Topics in Catalysis,2020,63(9):793−809.

[14]WEBER J L, MARTÍNEZ DEL MONTE D, BEERTHUIS R, et al. Conversion of synthesis gas to aromatics at medium temperature with a Fischer-Tropsch and ZSM−5 dual catalyst bed[J]. Catalysis Today,2021,369:175−183.

[15]高辉,杜伟东,王爽,等. 神华宁煤煤制油项目变换工艺的选择与应用[J]. 氮肥与合成气,2021,49(5):22−25.

GAO H, DU W D, WANG S, et al. Selection and application of shift process in Shenhua Ningmei coal-to-oil project[J].

Nitrogenous Fertilizer & Syngas,2021,49(5):22−25.

[16]YOU Q, YAO Q G, SONG R X, et al. Multi-dimensional safety risk assessment on coal mines under the profitability dilemma[J]. Scientific Reports,2023,13(1):2687.

[17]ZHANG Y L, LI J J, TIAN Y J, et al. Virtual water flow associated with interprovicial coal transfer in China: impacts and suggestions for mitigation[J]. Journal of Cleaner Production,2021,289:125800.

[18]姚炜珊,侯雅磊,魏国强,等. 二氧化碳资源化利用研究进展[J]. 新能源进展,2024,12(2):182−192.

YAO W S, HOU Y L, WEI G Q, et al. Research progress of carbon dioxide resource utilization[J]. Advances in New and Renewable Energy,2024,12(2):182−192.

[19]CHAI J C, PESTMAN R, CHIANG F K, et al. Influence of carbon deposits on Fe-carbide for the Fischer-Tropsch reaction[J]. Journal of Catalysis,2022,416:289−300.

[20]LIU W Q, CHENG S F, MALHI H S, et al. Hydrogenation of COto olefins over iron-based catalysts: a review[J]. Catalysts,2022,12(11):1432.

[21]CUI L R, LIU C, YAO B Z, et al. A review of catalytic hydrogenation of carbon dioxide: from waste to hydrocarbons[J].Frontiers in Chemistry,2022,10:1037997.

[22]ANDERSON R B. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties[J]. Catalysis Reviews,1980,21(1):53−71.

[23]BEILBY G T, HENDERSON G G. The action of ammonia on metals at high temperatures[J]. Journal of the Chemical Society, Faraday Transactions,1901,79:1245−1256.

[24]KIM T K, TAKAHASHI M. New magnetic material having ultrahigh magnetic moment[J]. Applied Physics Letters,1972,20(12):492−494.

[25]DOS SANTOS C A, DE BARROS B A S, DE SOUZA J P, et al. Iron nitride and carbonitride phases in a nitrogen implanted carbon steel[J]. 1982,41(3):237−239.

[26]GAO S, YANG S H, WANG H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbonbased nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438−444.

[27]GUO R D, SU D, CHEN F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces,2022,14(2):3084−3094.

[28]WANG L, YIN J, ZHAO L, et al. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst[J]. Chemical Communications,2013,49(29):3022−3024.

[29]QI W L, LIU S Q, LI F, et al. Prussian blue derived Fe2N for efficiently improving the photocatalytic hydrogen evolution activity of g−C3N4nanosheets[J]. Catalysis Science & Technology,2019,9(10):2571−2577.

[30]CAO M H, LIU T F, SUN G B, et al. Magnetic iron nitride nanodendrites[J]. Journal of Solid State Chemistry,2005,178(7):2390−2393.

[31]LI L G, QING M, LIU X W, et al. Efficient one-pot synthesis of higher alcohols from syngas catalyzed by iron nitrides[J].Chem Cat Chem,2020,12(7):1939−1943.

[32]ZHANG C Y, PENG X L, LI J, et al. Design, preparation, and magnetic properties of Fe4N/Fe3N soft magnetic composites fabricated by gas nitridation[J]. Journal of Superconductivity and Novel Magnetism,2023,36(3):923−929.

[33]李建敏,王群,郭红霞. 气体氮化法制备Fe4N超细粉末的工艺研究[J]. 硅酸盐通报,2008,27(5):1087−1090.

LI J M, WANG Q, GUO H X. Studies of Fe4N particles process obtained by nitrization of gas[J]. Bulletin of the Chinese Ceramic Society,2008,27(5):1087−1090.

[34]WANG C, ZHANG J, CHEN J G. Preparation of single-phase iron nitrides and investigation of their Fischer−Tropsch synthesis performance[J]. Chemistry Select,2020,5(13):3953−3958.

[35]刘思林,于英仪,滕荣厚,等. 诸因素对制备氮化铁磁性液体的影响[J]. 金属学报,1998,34(11):1223−1226.

LIU S L, YU Y Y, TENG R H, et al. The influence of several factors on the preparation of nitride iron magnetic fluid[J].Acta Metallrugica Sinica,1998,34(11):1223-1226.

[36]ZHAO N, WANG W, LEI X, et al. Synthesis, structure and magnetic properties of Fe3N nanoparticles[J]. Journal of Materials Science: Materials in Electronics,2017,28(20):15701−15707.

[37]HUNG T F, TU M H, TSAI C W, et al. Influence of pyrolysis temperature on oxygen reduction reaction activity of carbonincorporating iron nitride/nitrogen-doped graphene nanosheets catalyst[J]. International Journal of Hydrogen Energy,2013,38(10):3956−3962.

[38]ZHAO B H, SUN M Y, CHEN F P, et al. Unveiling the activity origin of iron nitride as catalytic material for efficient hydrogenation of CO2to C2+hydrocarbons[J]. Angewandte Chemie,2021,133(9):4546−4550.

[39]ZHANG Z K, LI D X, WANG J, et al. Cascade upcycling polystyrene waste into ethylbenzene over Fe2N@C[J]. Applied Catalysis B: Environmental,2023,323:122164.

[40]CUI X Q, LIANG X H, LIU W, et al. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C[J]. Chemical Engineering Journal,2020,381:122589.

[41]CUI X Q, LIANG X H, CHEN J B, et al. Customized unique core−shell Fe2N@N-doped carbon with tunable void space for microwave response[J]. Carbon,2020,156:49−57.

[42]LI Z, FANG Y J, ZHANG J T, et al. Necklace-like structures composed of Fe3N@C yolk−shell particles as an advancedanode for sodium-ion batteries[J]. Advanced Materials,2018,30(30):1800525.

[43]OTUN K O, LIU X Y, HILDEBRANDT D. Metal-organic framework (MOF)-derived catalysts for Fischer−Tropsch synthesis: recent progress and future perspectives[J]. Journal of Energy Chemistry,2020,51:230−245.

[44]MA S Y, HAN W G, HAN W L, et al. Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review[J]. Journal of Materials Chemistry A,2023,11(7):3315−3363.

[45]ANNAMALAI J, MURUGAN P, GANAPATHY D, et al. Synthesis of various dimensional metal organic frameworks(MOFs) and their hybrid composites for emerging applications:a review[J]. Chemosphere,2022,298:134184.

[46]王文敬, 董浩琪, 卢洁,等. 碳包裹氮化铁复合材料的制备及微波吸收性能[J]. 中国粉体技术,2024,30(3):39−50.

WANG W J, DONG H Q, LU J, et al. Preparation and microwave absorption properties of carbon-coated iron nitride composites[J]. China Powder Science and Technology,2024,30(3):39−50.

[47]YANG Z Q, GUO S J, PAN X L, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J]. Energy& Environmental Science,2011,4(11):4500−4503.

[48]LIU Z X, LIU H W, GAO Y J, et al. Carrier synergistic effect of iron based catalysts for CO hydrogenation to lower olefins[J]. Reaction Kinetics, Mechanisms and Catalysis,2024,137(2):879−896.

[49]TIAN Z P, WANG C G, SI Z, et al. Enhancement of light olefins selectivity over N-doped Fischer−Tropsch synthesis catalyst supported on activated carbon pretreated with KMnO[4 J]. Catalysts,2019,9(6):505.

[50]WANG C, ZHU H Q, ZHANG J, et al. Tuning Fischer−Tropsch synthesis product distribution toward light olefins over nitrided Fe−Mn bimetallic catalysts[J]. Fuel,2023,343:127977.

[51]HUMMEL A. Surface and bulk changes in iron nitride catalysts in H2/CO mixtures[J]. Journal of Catalysis,1988,113(1):236−249.

[52]YEH E, JAGGI N K, BUTT J B, et al. Silica-supported iron nitride in Fischer−Tropsch reactions characterization of the catalyst[J]. Journal of Catalysis,1985,91(2):231−240.

[53]FU X P, YU W Z, MA C, et al. Supported Fe2C catalysts originated from Fe2N phase and active for Fischer−Tropsch synthesis[J]. Applied Catalysis B: Environmental,2021,284:119702.

[54]QIAN F, BAI J W, CAI Y, et al. Stabilized ε−Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for hightemperature olefin synthesis[J]. Nature Communications,2024,15(1):5128.