复旦大学 材料科学系 先进涂料教育部工程研究中心,上海 200438
游波,吴晴宇. 几种固体废弃物粉体在功能涂层材料中的应用[J]. 中国粉体技术,2025,31(1):1-11.
YOU Bo, WU Qingyu. Applications of various solid waste powders in functional coating materials[J]. China Powder Science and Technology,2025,31(1):1−11.
DOI:10.13732/j.issn.1008-5548.2025.01.002
收稿日期:2024-07-01,修回日期:2024-08-15,上线日期:2024-10-07。
基金项目:国家重点科技攻关计划,编号:2022YFA1205201。
第一作者简介:游波(1965—),女,教授,博士,博士生导师,江苏省高层次引进人才,研究方向为聚合物树脂合成、功能涂层材料、有机‒无机复合材料、自然资源综合利用等的研发及应用。E-mail: youbo@fudan. edu. cn。
摘要:【目的】 为了固体废弃物的高经济价值的资源化再利用,重点考察矿产尾矿粉体、粉煤灰、冶金废渣、硅灰、废塑料等几种常见固体废弃物在功能涂层材料中的应用。【研究现状】综述包括矿产业尾矿固废、工业固体废弃物和生活固体废弃物等几种固体废弃物在涂层材料中的资源化再利用途径;对尾矿固体废弃物进行物理或化学改性,应用于功能涂层材料中,能使涂层材料具有不同的特殊功能,拓宽了涂层材料的应用领域,也使尾矿固体废弃物实现高值化应用;粉煤灰、冶金废渣、硅灰等工业固体废弃物在组成成分中具有大量的活性成分,可以通过后处理和改性提升附加值;塑料废弃物通过粉碎、溶解、煅烧等技术,可以作为涂料成膜物、光-热功能填料、疏水填料等应用于涂层材料中。【展望】将固体废弃物应用于涂层材料是具有良好经济效益的资源化再利用方式,能够缓解固体废物所带来的环境危害,实现高值化的资源化再利用。
关键词:固体废弃物;粉体;功能涂层材料;资源化再利用
Significance In our daily life and industrial production, large amounts of solid waste are inevitably generated. The accumulation of this solid waste can significantly impact on the living environment and socio-economic development. To effectively address the severe challenges posed by this issue, this paper focuses on the innovative applications of solid waste in functional coating materials, exploring high value-added conversion pathways for solid waste and aiming to achieve resource reuse with high economic benefits.
Progress This paper systematically reviews and explores strategies for resource reuse of various types of solid waste in functional coating materials, including mining tailings, industrial solid waste, and household plastic waste. The strategies take full advantage of the characteristics of solid waste, modifying it through physical and chemical methods, which greatly enhance the inherent properties of these materials. After modification, the solid waste can be applied to functional coating materials, enabling a range of specific functions such as flame retardancy, corrosion resistance, and self-cleaning. Considering the great potential and challenges in the resource reuse of solid waste, applying it to functional coatings is a promising and highly economical solution. This approach not only alleviates the environmental pressure caused by solid waste pollution but also achieves a high-value transformation of waste through technological innovation.
Conclusions and Prospects Although much research has been conducted on the application of solid waste in functional coating materials, there is still a lack of large-scale commercial applications. Therefore, further cost reduction and process optimization are urgently needed to bring the experimental results to market. The resource reuse of solid waste is promising for future development. Applying solid waste to functional coating materials is an economical way to reuse resource. This approach not only significantly mitigates the environmental harm caused by solid waste but also successfully achieves its high-value resource reuse, paving an innovative path for environmental protection and resource utilization.
Keywords:solid waste; powder; functioal coating materials; resource reuse
[1]ZHONG M Y, MENG J, NING B K, et al. Preparation and alkali excitation mechanism of coal gangue-iron ore tailings nonsintering ceramsite[J]. Construction and Building Materials,2024,426:136209.
[2]LIN J X, LIU R N, LIU L Y, et al. High-strength and high-toughness alkali-activated composite materials: optimizing mechanical properties through synergistic utilization of steel slag, ground granulated blast furnace slag and fly ash [J].Construction and Building Materials,2024,422:135811.
[3]XU F, LI Z J, LI T, et al. The mechanical properties and microstructure of tailing recycled aggregate concrete[J]. Materials,2024,17(5):1058.
[4]LI P W, LUO S H, ZHANG L, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology,2021,276:119380.
[5]ZHANG N, TANG B W, LIU X M. Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete[J]. Construction and Building Materials,2021,288:123022.
[6]胡国峰,许晓明,蒋庆肯,等. 铅锌尾矿资源化利用研究进展[J]. 现代矿业,2022,38(4):219-221.
HU G F, XU X M, JIANG Q K, et al. Research progress on resource utilization of lead-zinc tailings[J]. Modern Mining,2022,38(4):219-221.
[7]路畅,陈洪运,傅梁杰,等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报,2021,35(5):5011-5026.
LU C, CHEN H Y, FU L J, et al. Research progress on the preparation of new building materials using iron tailings[J].Materials Reports,2021,35(5):5011-5026.
[8]姚华辉, 蔡练兵, 刘维, 等. 我国金属矿山废石资源化综合利用现状与发展[J]. 中国有色金属学报,2021,31(6):1649-1660.
YAO H H, CAI L B, LIU W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China[J]. The Chinese Journal of Nonferrous Metals,2021,31(6):1649-1660.
[9]王永卿,张均,王来峰. 我国矿山固体废弃物资源化利用的重要问题及对策[J]. 中国矿业,2016,25(9):69-73,91.
WANG Y Q, ZHANG J, WANG L F. Critical issues and countermeasures towards China’s recycling utilization of mining solid wastes in the new normal economy[J]. China Mining Magazine,2016,25(9):69-73,91.
[10]杜金晶,鲍彦如,王雪,等. 提钒尾矿综合回收利用研究现状[J]. 矿冶工程,2024,44(2):153-159,166.
DU J J, BAO Y R, WANG X, et al. Research status of comprehensive recycling of vanadium tailings[J]. Mining and Metllurgical Engineering,2024,44(2):153-159,166.
[11]魏毋忧,王炜,陈桂明,等. 钼尾矿在混凝土中应用的研究进展[J]. 矿产综合利用,2023(1):155-161.
WEI W Y, WANG W, CHEN G M, et al. Research progress on application of molybdenum tailings in concrete[J]. Multipurpose Utilization of Mineral Resources,2023(1):155-161.
[12]WANG Q, LI J J, ZHU X N, et al. Approach to the management of gold ore tailings via its application in cement production[J]. Journal of Cleaner Production,2020,269:122303.
[13]王文杰. 铁尾矿作为路面基层材料的适应性研究[J]. 山西建筑,2023,49(2):147-151.
WANG W J. Study on adaptability of iron tailings as pavement base material[J]. Shanxi Architecture,2023,49(2):147-151.
[14]SCHATZMAYR WELP SÁ T, ODA S. Use of iron ore tailings and sediments on pavement structure[J]. Construction and Building Materials,2022,342:128072.
[15]张宏泉,文进,童慧,等. 锂尾矿资源化再利用现状与前景[J]. 陶瓷,2021(3):46-49.
ZHANG H Q, WEN J, TONG H, et al. Resource reuse status and prospect of lithium tailings[J]. Ceramics,2021(3):46-49.
[16]杨爽,安路阳,崔晓东,等. 鞍山型铁尾矿综合利用现状及发展展望[J]. 中国资源综合利用,2023,41(2):103-108.
YANG S, AN L Y, CUI X D, et al. Current situation and development prospect of comprehensive utilization of Anshantype iron tailings[J]. China Resources Comprehensive Utilization,2023,41(2):103-108.
[17]欧津辰, 刘清, 黑福前, 等. 尾矿砂-S-95矿渣粉地聚物对铅离子的固化及其作用机制[J]. 中国粉体技术,2023,29(3):127-134.
OU J C, LIU Q, HEI F Q, et al. Properties and mechanism of lead ion solidification with tailing sand-S-95 slag powder geopolymer[J]. China Powder Science and Technology,2023,29(3):127-134.
[18]张雪梅,丁阳,赵志林,等. 石英砂尾矿和白炭黑对环氧地坪涂料的性能影响研究[J]. 硅酸盐通报,2017,36(10):3521-3526.
ZHANG X M, DING Y, ZHAO Z L, et al. Effect of quartz sand tailings and silica white on the performance of epoxy resin floor coatings[J]. Bulletin of the Chinese Ceramic Society,2017,36(10):3521-3526.
[19]汪徐春,宋常春,刘青林,等. 石英砂尾矿添加到苯丙乳液涂料中的性能研究[J]. 硅酸盐通报,2014,33(5):1225-1230.
WANG X C, SONG C C, LIU Q L, et al. Study on properties of styrene-acrylic emulsion paint added quartz sand tailings[J].Bulletin of the Chinese Ceramic Society,2014,33(5):1225-1230.
[20]GALVÃO J L B, ANDRADE H D, BRIGOLINI G J, et al. Reuse of iron ore tailings from tailings dams as pigment for sustainable paints[J]. Journal of Cleaner Production,2018,200:412-422.
[21]曹泽宇,高宏宇,宋慧平,等. 水灰比对煤矸石煅烧高岭土基无机水性涂料性能的影响研究[J]. 涂料工业,2020,50(5):14-18.
CAO Z Y, GAO H Y, SONG H P, et al. Effect of water-cement ratio on performance of coal gangue calcined kaolin-based inorganic waterborne coatings[J]. Paint & Coatings Industry,2020,50(5):14-18.
[22]WANG F Y, LIU H, YAN L. Fabrication of polypyrrole-decorated tungsten tailing particles for reinforcing flame retardancy and ageing resistance of intumescent fire-resistant coatings[J]. Polymers,2022,14(8):1540.
[23]WU Q Y, LEI Y, DING C X, et al. Novel solar-induced wastewater purification materials originated from ore tailing solid waste[J]. Sustainable Materials and Technologies,2024,40: e00893.
[24]SU Z Y, TANG Q G, ZHAO W W, et al. Preparation of iron ore tailings-based superhydrophobic coatings[J]. Materials,2022,15(12):4235.
[25]FANG Z Q, WANG G Q, XIONG Y K, et al. Anti-corrosion performance of polyaniline coated basalt rockwool wastes/epoxy resin coatings[J]. Coatings,2021,11(4):463.
[26]李建涛,韩兵正,王之宇,等 . 钼尾矿及钼矿废石制备保温真石漆的试验研究[J]. 新型建筑材料,2022,49(6):56-60,68.
LI J T, HAN B Z, WANG Z Y, et al. Experimental study on preparation of thermal insulation real stone paint using molybdenum tailings and molybdenum ore waste rock[J]. New Building Materials,2022,49(6):56-60,68.
[27]汪学彬,杨重卿,张祥伟,等. 工业固体废弃物制备陶粒及其应用研究进展[J]. 中国粉体技术,2021,27(2):1-8.
WANG X B, YANG C Q, ZHANG X W, et al. Preparation and application of ceramsite prepared from industrial solid waste:a review[J]. China Powder Science and Technology,2021,27(2):1-8.
[28]孙万里. 一般工业固体废弃物资源化综合处置利用技术的研究[J]. 中国石油和化工标准与质量,2024,44(3):178-180.
SUN W L. Study on comprehensive treatment and utilization technology of general industrial solid waste[J]. China Petroleum and Chemical Standard and Quality,2024,44(3):178-180.
[29]关品品. 固废基混合隔热材料对高地温巷道隔热降温效果研究[D]. 徐州:中国矿业大学,2023.
GUAN P P. Study on the effect of solid waste-based mixed heat insulation materials on heat insulation and cooling of high ground temperature roadway[D]. Xuzhou: China University of Mining and Technology,2023.
[30]ZHANG J F, MEI B, ZHANG Y, et al. Hierarchical bio-inspired design and fabrication of all-dimensional superhydropho⁃bic ultra-lightweight high-volume fly ash cement foams using novel ultrasonic-assisted siloxane-encapsulated pickering emulsions[J]. Composites Part B: Engineering,2024,282:111581.
[31]XIAO T Y, LIANG X Z, DU S. Development of high-volume fly ash concrete with improved interfacial transition zone[J].Journal of Building Engineering,2024,87:109050.
[32]程银银,李宏波,康鑫睿,等 . 水泥和粉煤灰稳定钢渣‒砼再生碎石路基混合料的制备及其性能[J]. 中国粉体技术,2023,29(4):11-21.
CHENG Y Y, LI H B, KANG X R, et al. Preparation and properties of subgrade mixture made of steel slag‒concrete regeneration gravel stabilized with cement and fly ash[J]. China Powder Science and Technology,2023,29(4):11-21.
[33]GUO X L, LI H B, WANG C. Improvement on freeze-thaw durability of municipal solid waste incineration fly ash-based autoclaved wall blocks by triethoxy(octyl)silane/nano-Al2O3 and triethoxy(octyl)silane/graphene nanoplatelets coatings[J]. Journal of Cleaner Production,2023,392:136188.
[34]ZHOU Y W, YU Y, GUO W H, et al. Development of inorganic anticorrosive coatings for steel bars: corrosion resistance testing and design[J]. Cement and Concrete Composites,2024,152:105612.
[35]LI J C, CHEN P, WANG Y. Tribological and corrosion performance of epoxy resin composite coatings reinforced with graphene oxide and fly ash cenospheres[J]. Journal of Applied Polymer Science,2021,138(11):50042.
[36]王美晨. 固废粉煤灰基沸石复合涂层的制备及性能研究[D]. 太原:中北大学,2023.
WANG M C. Preparation and properties of zeolite composite coating based on solid waste fly ash [D]. Taiyuan: North University of China,2023.
[37]白瑞华. 固废基超疏水涂层制备工艺及性能研究[D]. 太原:山西大学,2023.BAI R H. Study on preparation technology and properties of solid waste-based superhydrophobic coating[D]. Taiyuan:Shanxi University,2023.
[38]GU H D, YANG C Q, PAN M X, et al. Highly oriented crystals zinc powder from recovery of zinc smelting slag[J]. Materials Today Sustainability,2024,27:100809.
[39]唐咸远,胡贤松,罗杰,等. 改性材料及其掺量对超高性能混凝土力学性能的影响[J]. 中国粉体技术,2024,30(1):153-160.TANG X Y, HU X S, LUO J, et al. Effects of modified materials and its contents on mechanical property of ultra-high performance concrete[J]. China Powder Science and Technology,2024,30(1):153-160.
[40]吕自豪. 利用铜渣制备硅砖及红外辐射涂层的结构与性能研究[D]. 武汉:武汉科技大学,2023.
LÜ Z H. Study on the structure and properties of silicon brick and infrared radiation coating prepared from copper slag[D].Wuhan: Wuhan University of Science and Technology,2023.
[41]段德丹,廖洪强,王佳娜,等. 固废基真石漆涂料的制备与性能研究[J]. 非金属矿,2020,43(4):16-19.
DUAN D D, LIAO H Q, WANG J N, et al. Study on preparation and properties of solid waste-based real stone paint[J].Non-metallic Mines,2020,43(4):16-19.
[42]KUMAR S, KUMAR D R, WIPULANUSAT W, et al. Development of ANN-based metaheuristic models for the study of the durability characteristics of high-volume fly ash self-compacting concrete with silica fume[J]. Journal of Building Engineering,2024,94:109844.
[43]JIANG C H, WANG A Y, BAO X F, et al. A review on geopolymer in potential coating application: materials, preparation and basic properties[J]. Journal of Building Engineering,2020,32:101734.
[44]WANG Y C, LI F, ZHAO J P. Novel halogen-free Si‒C‒P flame-retarding coatings constructed by DOPO/flake graphite codoping silica fume-based geopolymer[J]. Journal of Applied Polymer Science,2023,140(12): e53645.
[45]罗俊瑶. 地质聚合物涂层材料的制备及性能研究[D]. 绵阳:西南科技大学,2022.
LUO J Y. Preparation and properties of geopolymer coating materials[D]. Mianyang: Southwest University of Science and Technology,2022.
[46]KANG S M, LIANG J H, YUAN H J, et al. Tailored recycling chemicals and fuels from poly-3-hydroxybutyrate: a review[J]. Biofuels, Bioproducts and Biorefining,2022,16(5):1412-1427.
[47]孟联芹. 废旧聚苯乙烯在金属防腐中的应用[J]. 合成材料老化与应用,2021,50(1):68-70.
MENG L Q. Application of waste polystyrene in metal anticorrosion[J]. Synthetic Materials Aging and Application,2021,50(1):68-70.
[48]陈欢,万坤,牛波,等. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展,2022,41(3):1453-1469.
CHEN H, WAN K, NIU B, et al. Recent progresses in chemical recycling and upcycling of waste plastics[J]. Chemical Industry and Engineering Progress,2022,41(3):1453-1469.
[49]孙昱楠,张帆,李建园,等. 废塑料处置与利用技术研究进展[J]. 中国工程科学,2023,25(3):182-196.
SUN Y N, ZHANG F, LI J Y, et al. Advances in waste plastic disposal and utilization technology[J]. Strategic Study of CAE,2023,25(3):182-196.
[50]胡延庆,胡凡,周剑池,等. 废弃塑料回收与转化的研究进展[J]. 中国塑料,2024,3(4):79-87.
HU Y Q, HU F, ZHOU J C, et al. Research progress in upcycling of waste plastics[J]. China Plastics,2024,38(4):79-87.
[51]LUO Y, NAIDU R, ZHANG X, et al. Microplastics and nanoplastics released from a PPE mask under a simulated bushfire condition [J]. Journal of Hazardous Materials,2022,439:129621.
[52]BUJAK J W. Production of waste energy and heat in hospital facilities [J]. Energy,2015,91:350-362.
[53]李国华,方学镇,沈祝,等. 聚氨酯涂料废弃物的化学降解及其资源化利用[J]. 中国塑料,2024,38(3):79-85.
LI G H, FANG X Z, SHEN Z, et al. Chemical degradation of polyurethane coating waste and its resource utilization[J].China Plastics,2024,38(3):79-85.
[54]ZHAO Y, KANG Y Q, FAN M C, et al. Precise separation of spent lithium-ion cells in water without discharging for recycling [J]. Energy Storage Materials,2022,45:1092-1099.
[55]CURTZWILER G W, SCHWEITZER M, LI Y F, et al. Mixed post-consumer recycled polyolefins as a property tuning material for virgin polypropylene [J]. Journal of Cleaner Production,2019,239:117978.
[56]HARUSSANI M M, SAPUAN S M, RASHID U, et al. Pyrolysis of polypropylene plastic waste into carbonaceous char: priority of plastic waste management amidst COVID-19 pandemic [J]. Science of the Total Environment,2022,803:149911.
[57]PATTANSHETTI A, PRADEEP N, CHAITRA V, et al. Synthesis of multi-walled carbon nanotubes (MWCNTs) from plastic waste & analysis of garlic coated gelatin/MWCNTs nanocomposite films as food packaging material [J]. SN Applied Sciences,2020,2(4):730.
[58]LI W, ZHANG X H, YU X F, et al. Near infrared light responsive self-healing superhydrophobic coating based on solid wastes [J]. Journal of Colloid and Interface Science,2020,560:198-207.
[59]WANG X T, LIANG Y F, PU Z C, et al. Transforming waste to treasure: superhydrophobic coatings from recycled polypropylene for high-value application [J]. Progress in Organic Coatings,2024,188:108248.
[60]GUTIERREZ-VELASQUEZ E I, COLORADO H A. Photoluminescent asphalt coating made from recycled EPS and strontium aluminate particles for improved road safety and waste management: a characterization study using ethyl acetate and acetone diluents [J]. Journal of Materials Research and Technology,2023,26:1397-1411.