成都理工大学 材料与化学化工学院,四川 成都 610059
引用格式:
周园,潘稳丞,马路祥,等. 包覆技术在锂离子电池正极材料中的应用及挑战[J]. 中国粉体技术,2025,31(1):1-13.
ZHOU Yuan, PAN Wencheng, MA Luxiang, et al. Application and challenges of coating technology in cathode materials of lithiumion batteries[J]. China Powder Science and Technology,2025,31(1):1−13.
DOI:10.13732/j.issn.1008-5548.2025.01.007
收稿日期:2024-07-11,修回日期:2024-09-15,上线日期:2024-10-08。
基金项目:国家自然科学基金项目,编号:U20A20337;青海省科技成果转化专项项目,编号:2020-GX-108。
第一作者简介:周园(1972—),男,教授,博士,博士生导师,青海省“高端创新人才千人计划”培养领军人才,研究方向为无机储能材料开发及应用。E-mail: yzhou712@sina. com。
摘要:【目的】 对包覆技术在正极材料中的应用现状进行总结和思考,提升锂离子电池的整体性能。【研究现状】综述湿法、干法和气相法3种包覆方法的原理、优缺点及产业化应用进展:湿法化学工艺操作简单,但设备要求高;干法化学工艺成本低,但能耗较高;气相化学工艺纯度高,但工艺复杂;包覆技术的研究集中在开发新型包覆材料、优化绿色环保的包覆工艺以及提高包覆层的功能性和稳定性上。【结论与展望】开发出更加先进包覆技术有望推动锂离子电池的性能提升,实现更加高效和可靠的能源储存,促进电池技术的进步和广泛应用。
关键词:锂离子电池;正极材料;包覆技术;产业化进展
Significance This paper aims to summarize the current status of coating technology applications and explore its role in enhancing the overall performance of lithium-ion batteries, thereby promoting advancements in lithium-ion battery technology.
Progress The principles, advantages, disadvantages, and industrial application progress of three coating methods, wet, dry,and vapor phase methods, are reviewed. The wet chemical process is simple to operate but requires high equipment standards.The dry chemical process is cost-effective but energy-intensive. The vapor phase chemical process offers high purity but involves complex procedures. Research on coating technology focuses on developing new coating materials, optimizing environmentally friendly coating processes, and improving the functionality and stability of the coating layer. Several companies have made significant progress in applying coating technology to lithium-ion battery cathode materials, advancing the practical implementation of this technology.
Conclusions and Prospects Developing more advanced coating technologies is expected to significantly improve the performance of lithium-ion batteries, providing more efficient and reliable energy storage solutions. Research trends include:
1) Exploring coating mechanisms. Investigating the interface reaction mechanisms between the coating layer and the cathode material to reduce adverse reactions and improve material stability.
2) Optimizing coating processes. By refining the coating process to optimize coating layer thickness and uniformity, the electrochemical and cycling performance of lithium-ion battery cathode materials can be enhanced.
3) Exploring coating characterization. Emerging techniques such as high-throughput analysis, in-situ characterization, and nanoscale characterization will significantly improve the research efficiency and accuracy of surface coating layers, providing strong support for the development and application of new materials.
4) Selection and design of materials. Choosing suitable coating materials and designing coating layers with excellent performance and stability remain key challenges.
5) Process optimization. Developing more environmentally friendly and energy-efficient coating processes to reduce production costs and environmental pollution is a pressing issue.
6) Industrial application. The stability and reliability of coating technology in large-scale production need further validation.
Keywords:lithium-ion battery; cathode material; coating; industrialization progress
[1]刘亚飞. 储能与动力电池用橄榄石型正极材料的开发及产业化进展[J/OL]. 矿冶,2024:1-18[2024-05-17]. https://link. cnki. net/urlid/11. 3479. td. 20240515. 1028. 002
LIU Y F. Development and industrialization of olivine cathode materials for energy storage and power batteries[J/OL]. Mining and Metallurgy,2024:1-18[2024-06-26]. https://link. cnki. net/urlid/11. 3479. td. 20240515. 1028. 002
[2]王崇国,刘广龙,金小容,等. 锂离子电池正极材料的研究进展[J]. 当代化工研究,2023(9):12-14.
WANG C G, LIU G L, JIN X R, el al. Research progress of cathode materials for lithium ion batteries[J]. Modern Chemical Research,2023(9):12-14.
[3]WU Y J, SHUANG W, WANG Y, et al. Recent progress in sodium-ion batteries: advanced materials, reaction mechanisms and energy applications[J]. Electrochemical Energy Reviews,2024,7(1):17.
[4]ARMAND M, AXMANN P, BRESSER D, et al. lithium-ion batteries current state of the art and anticipated developments[J].Journal of Power Sources,2020,479:228708.
[5]AGUILAR LOPEZ F, LAUINGER D, VUILLE F, et al. On the potential of vehicle-to-grid and second-life batteries to provide energy and material security[J]. Nature Communications,2024,15(1):4179.
[6]WULANDARI T, FAWCETT D, MAJUMDER S B, et al. Lithium-based batteries, history, current status, challenges, and future perspectives[J]. Battery Energy,2023,2(6):20230030.
[7]YANG X, ADAIR K R, GAO X, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solidstate lithium batteries[J]. Energy & Environmental Science,2021,14(2):643-671.
[8]KIM B, YANG S H, SEO J H, et al. Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries[J]. Advanced Functional Materials,2024,34(7):2310957.
[9]FICHTNER M, EDSTRÖM K, AYERBE E, et al. Rechargeable batteries of the future:he state of the art from a battery 2030 perspective[J]. Advanced Energy Materials,2022,12(17):2102904.
[10]LI J Y, LIN C, WENG M Y, et al. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nature Nano⁃technology,2021,16(5):599-605.
[11]LU S J, TANG L B, WEI H X, et al. Single-crystal nickel-based cathodes: fundamentals and recent advances[J]. Electrochemical Energy Reviews,2022,5(4):15.
[12]DA SILVA LIMA L, WU J S, CADENA E, et al. Towards environmentally sustainable battery anode materials: life cycle assessment of mixed niobium oxide (XNO™) and lithium-titanium-oxide (LTO)[J]. Sustainable Materials and Technologies,2023,37: e00654.
[13]ZHAO T Y, MAHANDRA H, MARTHI R, et al. An overview on the life cycle of lithium iron phosphate: synthesis, modification, application, and recycling[J]. Chemical Engineering Journal,2024,485:149923.
[14]MA J, LIU T T, MA J, et al. Progress, challenge, and prospect of LiMnO2:an adventure toward high-energy and low-cost Li-ion batteries[J]. Advanced Science,2024,11(2): e2304938.
[15]LIN T E, SEABY T, HU Y X, et al. Understanding and control of activation process of lithium-rich cathode materials[J].Electrochemical Energy Reviews,2022,5(2):27.
[16]LIU T C, LIU J J, LI L X, et al. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature,2022,606(7913):305-312.
[17]SUNGJEMMENLA, VINEETH S K, SONI C B, et al. Understanding the cathode-electrolyte interphase in lithium-ion batteries[J]. Energy Technology,2022,10(9):2200421.
[18]陆晓挺. 高容量锂离子电池正极材料的研究进展[J]. 合成材料老化与应用,2022,51(4):121-123.
LU X T. Research progress of high-capacity lithium ion battery cathode materials[J]. Synthetic Materials Aging and Application,2022,51(4):121-123.
[19]WU Y, LIU X, WANG L, et al. Development of cathode-electrolyte-interphase for safer lithium batteries[J]. Energy Storage Materials,2021,37:77-86.
[20]KO G, JEONG S, PARK S, et al. Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries[J]. Energy Storage Materials,2023,60:102840.
[21]LIU J W, HE S C, LIU S Q, et al. Advanced electrolyte systems with additives for high-cell-voltage and high-energy density lithium batteries[J]. Journal of Materials Chemistry A,2022,10(43):22929-22954.
[22]SUN L, LIU Y X, SHAO R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries[J]. Energy Storage Materials,2022,46:482-502.
[23]NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials,2021,38:309-328.
[24]LUO W B, ZHENG B L. Improved electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2cathode material by double-layer coating with graphene oxide and V2O5 for lithium-ion batteries[J]. Applied Surface Science,2017,404:310-317.
[25]KOBAYASHI H, YUAN G H, GAMBE Y, et al. Effective Li3AlF6 surface coating for high-voltage lithiumion battery operation[J]. ACS Applied Energy Materials,2021,4(9):9866-9870.
[26]EMBLETON T J, YUN J, CHOI J H, et al. Air and moisture robust surface modification for Ni-rich layered cathode materials for Li-ion batteries[J]. Small,2023,19(25):2206576.
[27]PEIXOTO D A, SILVA S C, BORGES P H S, et al. Hydrothermal synthesis as a versatile tool for the preparation of metal hexacyanoferrates: a review[J]. Journal of Materials Science,2023,58(7):2993-3024.
[28]WU N T, WU H, LIU H, et al. Solvothermal coating LiNi0. 8Co0.15Al0.05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials[J]. Journal of Alloys and Compounds,2016,665:48-56.
[29]ZHANG J C, GAO R, SUN L M, et al. Unraveling the multiple effects of Li2ZrO3 coating on the structural and electrochemical performances of LiCoO2 as high-voltage cathode materials[J]. Electrochimica Acta,2016,209:102-110.
[30]REN X P, PANG L Q, ZHANG Y X, et al. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2015,3(20):10693-10697.
[31]ZHANG B, HAN Y D, ZHENG J C, et al. A novel lithium vanadium fluorophosphate nanosheet with uniform carbon coating as a cathode material for lithium-ion batteries[J]. Journal of Power Sources,2014,264:123-127.
[32]NISAR U, AHMAD J A, PETLA R K, et al. Understanding the origin of the ultrahigh rate performance of a SiO2-modified LiNi0.5Mn1.5O4 cathode for lithium-ion batteries[J]. ACS Applied Energy Materials,2019,2(10):7263-7271.
[33]KIM Y, PARK H, SHIN K, et al. Rational design of coating ions via advantageous surface reconstruction in high-nickellayered oxide cathodes for lithium-ion batteries[J]. Advanced Energy Materials,2021,11(38):2101112.
[34]JO M, OH P, KIM J, et al. Electrochemical lithium storage performance at high voltage and temperature of LiNi0. 6Co0. 2Mn0.2O2 cathode for lithium-ion batteries by facile Mn3(PO4)2 dry coating[J]. Applied Surface Science,2023,613:156018.
[35]HOU Q, CAO G Z, WANG P, et al. Carbon coating nanostructured-LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by chemical vapor deposition method for high performance lithiumion batteries[J]. Journal of Alloys and Compounds,2018,747:796-802.
[36]XU Y L, PAN T Y, LIU F C, et al. Surface coating and doping of single-crystal LiNi0.5Co0.2Mn0.3O2 for enhanced high voltage electrochemical performances via chemical vapor deposition[J]. Journal of Electroanalytical Chemistry,2022,914:116286.
[37]CARTER R, OAKES L, MURALIDHARAN N, et al. Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2017,9(8):7185-7192.
[38]DAVIS B F, YAN X Y, MURALIDHARAN N, et al. Electrically conductive hierarchical carbon nanotube networks with tunable mechanical response[J]. ACS Applied Materials & Interfaces,2016,8(41):28004-28011.
[39]DOUGLAS A, MURALIDHARAN N, CARTER R, et al. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics[J]. Nanoscale,2016,8(14):7384-7390.
[40]MURALIDHARAN N, BROCK C N, COHN A P, et al. Tunable mechanochemistry of lithium battery electrodes[J]. ACS Nano,2017,11(6):6243-6251.
[41]VERVUURT R H J, KESSELS W M M , BOL A A. Atomic layer deposition for graphene device integration[J]. Advanced Materials Interfaces,2017,4(18):1700232.
[42]XIAO B W, WANG B Q, LIU J, et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating[J]. Nano Energy,2017,34:120-130.
[43]YU H, HE X Q, LIANG X H. AlF3-Al2O3 ALD thin-film-coated Li1.2 Mn0.54Co0.13Ni0.13O2 particles for lithium-ion batteries: long-term protection[J]. ACS Applied Materials & Interfaces,2022,14(3):3991-4003.
[44]LASKAR M R, JACKSON D H K, XU S Z, et al. Atomic layer deposited MgO: a lower overpotential coating for LiNi0.5Mn0.3Co0.2O2 cathode[J]. ACS Applied Materials & Interfaces,2017,9(12):11231-11239.
[45]林杰,文洪超,罗敏强,等. 一种多功能的锂离子电池正极材料包覆装置: CN 202311019877[P]. 2024-06-27.
LIN J, WEN H C, LUO M Q, el al. The utility model relates to a multifunctional anode material coating device for lithiumion battery: CN 202311019877[P]. 2024-06-27.
[46]施展,冯玉川,李峥. 一种正极材料包覆装置及包覆方法: CN202110252128. 7[P]. 2024-08-06.
SHI Z, FENG Y C, LI Z. The invention relates to a positive electrode material coating device and coating method: CN 202110252128. 7[P]. 2024-08-06.
[47]李军秀,张文艳,丁卫丰,等. 一种锂离子电池正极材料液相包覆方法及其包覆装置: CN 201610075092[P]. 2024-08-06.
LI J X, ZHANG W Y, DING W S, el al. The invention relates to a liquid phase coating method for positive electrode material of lithium ion battery and a coating device thereof: CN 201610075092[P]. 2024-08-06.
[48]谢玉虎,许鹏,王强,等. 一种核壳结构的新型锂离子电池正极材料包覆方法: CN 201310335969[P]. 2024-06-27.
XIE Y H, XU P, WANG Q, el al. A novel core-shell coating method for cathode materials of lithium ion batteries: CN 201310335969[P]. 2024-06-27.
[49]高明昊,杨茂萍,李道聪,等. 微孔导电聚合物膜包覆改性单晶三元正极材料的方法: CN 202110269448. 3[P]. 2024-06-27.
GAO M H, YANG M P, LI C D, el al. Method for coating modified single crystal ternary positive electrode material with microporous conductive polymer film: CN 202110269448. 3[P]. 2024-06-27.
[50]程迪,代树普,王明强,等. 一种包覆型富锂锰基材料及其制备方法: CN 201110096530. 7[P]. 2024-06-27.
YANG D, DAI S P, WANG M Q, el al. The invention relates to a coated Li-rich manganese based material and a preparation method thereof: CN 201110096530. 7[P]. 2024-06-27.
[51]庞胜利,沈湘黔,李剑晨,等. 锂电池正极材料超薄包覆层、锂电池正极材料及其制备方法: CN 201510030030[P].2024-06-27.
PANG S L, SHEN X Q, LI J C, el al. Lithium battery cathode material ultra-thin coating layer, lithium battery cathode material and preparation method thereof: CN 201510030030[P]. 2024-06-27.
[52]崔立峰,徐友龙,李溪. Al2O3包覆锰基层状晶体锂电池正极材料的制备方法: CN 201010018331. X[P]. 2024-06-27.
CUI L F, XU Y L, LI X. Preparation method of Al2O3 coated manganese base crystal lithium battery cathode material: CN201010018331. X[P]. 2024-06-27.
[53]邹昌武, 孙玖, 孟冲, 等. 镁铝尖晶石包覆高镍单晶三元正极材料与制备方法和锂电池: CN 202211688002. 5[P].2024-06-27.
CHOU C W, SUN J, MENG C, el al. Mg-Al spinel coated high nickel single crystal ternary cathode material and preparation method and lithium battery: CN 202211688002. 5[P]. 2024-06-27.
[54]李雪莎,程正,朱淇才,等. 一种多级包覆的正极材料及制备方法和锂电池: CN 202310821481. 1[P]. 2024-06-27.
LI X S, CHEN Z, ZHU Q C, el al. The invention relates to a multistage coated positive electrode material, a preparation method and a lithium battery: CN 202310821481. 1[P]. 2024-06-27.