ISSN 1008-5548

CN 37-1316/TU

最新出版

碳纳米管粉体的液相分散方法和机制
Methods and mechanisms of solution dispersion of carbon nanotube powders

王延青1a,1b ,高彩琴1a ,张朝阳2,3 ,倪宇翔4 ,黄 鑫2

1. 四川大学 a. 高分子科学与工程学院, b. 高分子材料工程国家重点实验室,四川 成都 610065;

2. 中国工程物理研究院 化工材料研究所,四川 绵阳 621999;3. 北京计算科学研究中心,北京 100048;

4. 西南交通大学 物理科学与技术学院,四川 成都 611756


引用格式:

王延青,高彩琴,张朝阳,等. 碳纳米管粉体的液相分散方法和机制[J]. 中国粉体技术,2025,31(1):1-13.

WANG Yanqing, GAO Caiqin, ZHANG Chaoyang, et al. Methods and mechanisms of solution dispersion of carbon nanotube powders[J]. China Powder Science and Technology,2025,31(1):1−13.

DOI:10.13732/j.issn.1008-5548.2025.01.015

收稿日期:2024-06-26,修回日期:2024-08-15,上线日期:2024-10-09。

基金项目:国家自然科学基金项目,编号 :U2330208。

第一作者简介:王延青(1984—),男,研究员,博士,博士生导师,四川省“海外高层次人才引进计划”特聘专家,研究方向为纳米碳材料。E-mail:yanqingwang@scu. edu. cn。

通信作者简介:张朝阳(1971—),男,研究员,博士,博士生导师,研究方向为含能材料。E-mail:chaoyangzhang@caep. cn。

倪宇翔(1984—),男,教授,博士,博士生导师,研究方向为声子热传导基础理论。E-mail:yuxiang. ni@swjtu. edu. cn。


摘要:【目的】 为了使碳纳米管(carbon nanotubes, CNTs)的性能发挥最大化,在各种基体中实现分散,需要克服CNTs管束的聚集,梳理CNTs液相分散方法和机制。【研究现状】综述碳纳米管的分散方法、分散机制和分散效果的测试方法;已经开发和优化了多种物理、化学和机械分散技术,但是目前仍面临分散效率低和分散稳定性差的问题。【结论与展望】未来的研究方向应聚焦于开发新型环保高效的分散剂,优化现有分散技术,深入探索 CNTs的分散机制,利用分散良好的CNTs开发多功能复合材料;同时建立标准化的分散度测试方法。

关键词:碳纳米管;分散;机制


Abstract

Objective To maximize the performance potential of carbon nanotubes(CNTs), it is crucial to overcome the inherent tendency of CNTs to form aggregates and achieve effective dispersion within various matrices.

Progress This paper reviews the methods, mechanisms, and evaluation techniques related to the dispersion of CNTs. Physical dispersion methods typically involve ultrasonication, high-shear mixing, and ball milling, using mechanical forces to break up CNT aggregates. Ultrasonication, for instance, uses high-frequency sound waves to generate cavitation bubbles in a liquid medium. The collapse of the bubbles produces intense localized forces capable of disentangling CNT bundles. High-shear mixing and ball milling similarly apply mechanical forces to achieve dispersion, but differ in their effectiveness and potential damages to the CNT structure. Chemical dispersion methods generally rely on CNT functionalization to enhance their solubility and compatibility with different solvents and matrices. This can be achieved through covalent functionalization, where chemical groups are directly attached to the CNT surface, or non-covalent functionalization, which involves the adsorption of surfactants,polymers, or biomolecules onto the CNT surface. Covalent functionalization, while effective in improving dispersion, may also alter the intrinsic properties of CNTs. Non-covalent functionalization, in contrast, preserves the CNT structure but may offer less stable dispersion depending on the interactions involved. Evaluating CNT dispersion involves various characterization techniques, including electron microscopy (TEM, SEM), spectroscopy (Raman, UV-Vis), and scattering methods (DLS,SAXS). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) provide direct visualization of CNT dispersion at the nanoscale. Spectroscopic methods such as Raman and ultraviolet-visible (UV-Vis) spectroscopy offer insights into the structural integrity and functionalization status of CNTs. Dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) are used to assess the size distribution and dispersion state of CNTs in a given medium.

Conclusions and Prospects Despite the development and optimization of physical, chemical, and mechanical dispersion techniques, challenges such as low dispersion efficiency and poor dispersion stability still remain. The interplay between dispersion techniques and the resulting properties of CNT-based materials underscores the need for continued innovation and optimization in this field. Future research could focus on several key areas to address these issues. One promising direction is the development of novel, environmentally friendly, and highly efficient dispersants. Further enhancement of current dispersion technologies and a deeper understanding of CNT dispersion mechanisms are also critical. Moreover, the utilization of well-dispersed CNTs to develop multifunctional composite materials holds significant potential. This progress can unlock CNTs’ full potential in diverse applications, from high-performance electronics to cutting-edge biomedical devices. Establishing robust and standardized dispersion evaluation methods is crucial to ensuring consistent and reliable integration of CNTs into these next-generation technologies.

Keywords:carbon nanotube; dispersion; mechanism



参考文献(References)

[1]IJIMA S J, Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.

[2]INAM F, YAN H, REECE M J, et al. Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite[J]. Advances in Applied Ceramics,2010,109(4):240-247.

[3]GÜVEN ÖZDEMIR Z, YILMAZ CANLI N, SENKAL B F, et al. Super-capacitive behavior of carbon nano tube doped 11(4-cyanobiphenyl-4-oxy) undecan-1-ol[J]. Journal of Molecular Liquids,2015,211:442-447.

[4]SONG S G, HA S, CHO H J, et al. Single-walled carbon-nanotube-based chemocapacitive sensors with molecular receptors for selective detection of chemical warfare agents[J]. ACS Applied Nano Materials,2019,2(1):109-117.

[5]ANIKINA E, BANERJEE A, BESKACHKO V, et al. Li-functionalized carbon nanotubes for hydrogen storage: importance of size effects[J]. ACS Applied Nano Materials,2019,2(5):3021-3030.

[6]WANG Y Y, ZHOU Z H, ZHOU C G, et al. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat resistant electromagnetic interference shielding and microwave absorption[J]. ACS Applied Materials & Interfaces,2020,12(7):8704-8712.

[7]GAO C Q, GUO M Y, LIU Y K, et al. Surface modification methods and mechanisms in carbon nanotubes dispersion[J].Carbon,2023,212:118133.

[8]GAO C Q, SHI Y Q, CHEN Y J, et al. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding[J]. Journal of Colloid and Interface Science,2022,606(Pt 2):1193-1204.

[9]HUANG Z, QIN R, ZHANG H, et al. Ambient-drying to construct unidirectional cellulose nanofibers/carbon nanotubes aerogel with ultra-light weight, robust, and superior microwave absorption performance[J]. Carbon,2023,212:118150.

[10]KIM G M, NAM I W, YANG B, et al. Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: the state of the art[J]. Composite Structures,2019,227:111244.

[11]KEINÄNEN P, SILJANDER S, KOIVULA M, et al. Optimized dispersion quality of aqueous carbon nanotube colloids as a function of sonochemical yield and surfactant/CNT ratio[J]. Heliyon,2018,4(9): e00787.

[12]YU J R, GROSSIORD N, KONING C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon,2007,45(3):618-623.

[13]TANABI H, ERDAL M. Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites[J]. Results in Physics,2019,12:486-503.

[14]WU K H, WANG D W, GENTLE I R. Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes[J]. Carbon,2015,81:295-304.

[15]CHERNYAK S A, IVANOV A S, MASLAKOV K I, et al. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view[J]. Physical Chemistry Chemical Physics,2017,19(3):2276-2285.

[16]VÁZQUEZ-VELÁZQUEZ A R, VELASCO-SOTO M A, PÉREZ-GARCÍA S A, et al. Functionalization effect on polymer nanocomposite coatings based on TiO₂-SiO₂ nanoparticles with superhydrophilic properties[J]. Nanomaterials,2018,8(6):369.

[17]YAGHOUBI A, RAMAZANI A. Synthesis of amino-functionalized carbon nanotubes and their applications[J]. Current Organic Chemistry,2018,22(15):1505-1522.

[18]AZEVEDO R M, COSTA J B, SERP P, et al. A strategy for improving peroxidase stability via immobilization on surface modified multi-walled carbon nanotubes[J]. Journal of Chemical Technology & Biotechnology,2015,90(9):1570-1578.

[19]NG C M, LOH H S, MUTHOOSAMY K, et al. Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide activated amidation[J]. International Journal of Nanomedicine,2016,11:1607-1614.

[20]KRAWCZYK T, MARIAN K, PAWLYTA M. Linear polymer separation using carbon-nanotube-modified centrifugal filter

units[J]. Journal of Separation Science,2016,39(4):725-731.

[21]KIM Y S, OH J Y, KIM J H, et al. Crucial role of oxidation debris of carbon nanotubes in subsequent end-use applications of carbon nanotubes[J]. ACS Applied Materials & Interfaces,2017,9(20):17552-17564.

[22]KADHUM M J, SWATSKE D, WESTON J, et al. Polymer-stabilized multi-walled carbon nanotube dispersions in high salinity brines[J]. Energy & Fuels,2017,31(5):5024-5030.

[23]MAZZOTTA G, DOLLMANN M, HABISREUTINGER S N, et al. Solubilization of carbon nanotubes with ethylene-vinyl acetate for solution-processed conductive films and charge extraction layers in perovskite solar cells[J]. ACS Applied Materials & Interfaces,2019,11(1):1185-1191.

[24]KANIMOZHI C, SHEA M J, KO J, et al. Removable nonconjugated polymers to debundle and disperse carbon nanotubes[J]. Macromolecules,2019,52(11):4278-4286.

[25]QIU S, WU K J, GAO B, et al. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices[J]. Advanced Materials,2019,31(9): e1800750.

[26]ZHOU Y Y, FIRKOWSKA-BODEN I, ARRAS M M L, et al. Polystyrene homopolymer enhances dispersion of MWCNTs stabilized in solution by a PS-b-P2VP copolymer[J]. Langmuir,2021,37(1):391-399.

[27]OLIVERAS S, LI S Y, MAITY N, et al. Emergent dispersion and sorting behaviors of carbon nanotubes when combining short conjugated oligomers with nonconjugated coil segments[J]. Macromolecules,2024,57(8):3588-3594.

[28]ZHOU Y, AZUMI R, SHIMADA S. A highly durable, stretchable, transparent and conductive carbon nanotube-polymeric acid hybrid film [J]. Nanoscale,2019,11(9):3804-3813.

[29]ZHOU Y, YOKOTA Y, TANAKA S, et al. Highly conducting, durable and large area carbon nanotube thick films for stretchable and flexible electrodes [J]. Applied Physics Letters,2019,114(21):213104.

[30]GUO M Y, CAO Z Q, LIU Y K, et al. Preparation of tough, binder-free, and self-supporting LiFePO4 cathode by using mono-dispersed ultra-long single-walled carbon nanotubes for high-rate performance Li-ion battery[J]. Advanced Science,2023,10(13): e2207355.

[31]KUKOBAT R, MINAMI D, HAYASHI T, et al. Sol-gel chemistry mediated Zn/Al-based complex dispersant for SWCNT in water without foam formation[J]. Carbon,2015,94:518-523.

[32]KUKOBAT R, HAYASHI T, MATSUDA T, et al. Zn/Al complex-SWCNT ink for transparent and conducting homogeneous films by scalable bar coating method[J]. Chemical Physics Letters,2016,650:113-118.

[33]KUKOBAT R, HAYASHI T, MATSUDA T, et al. Essential role of viscosity of SWCNT inks in homogeneous conducting film formation[J]. Langmuir,2016,32(27):6909-6916.

[34]KIM J H, OH J Y, SHIN Y E, et al. Versatile reorganization of metal-polyphenol coordination on CNTs for dispersion,assembly and transformation[J]. Carbon,2018,144:402-409.

[35]卢欢欢,王文广,李佩枫, SiO2溶胶和CNTs杂化增强水泥基复合材料性能研究[J]. 混凝土与水泥制品,2023(3):10-14.

LU H H,WAGNG W G,LI P P. Study on properties of cement-based composite materials reinforced by SiO2 Sol and carbon nanotubes hybrid [J]. China Concrete and Cement Products,2023(3):10-14.

[36]GAO B, BOWER C, LORENTZEN J D, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes[J]. Chemical Physics Letters,2000,327(1/2):69-75.

[37]孟振强,刘如铁,熊拥军,等. 球磨方式对多壁碳纳米管形貌和结构的影响[J]. 中国有色金属学报,2012,22(12):3421-3426.

MENG Z Q, LIU R T, XIONG Y J, et al. Effect of bah milling on morphology and structure of multi-walled carbon nanotubes[J]. The Chinese Journal of Nonferrous Metals,2012,22(12):3421-3426.

[38]陆富龙. 碳纳米管对水泥基材料的作用机理研究[D]. 广州:广州大学,2019.

LU F L. Effect of carbon nanotubes on macroscopic properties of cement and microscopic mechanism[D]. Guangzhou:Guangzhou University,2019.

[39]CHEN Z, YANG Y L, WU Z Y, et al. Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface[J]. The Journal of Physical Chemistry B,2005,109(12):5473-5477.

[40]杜润红, 闫伟, 杜春良, 等. 外加电场对碳纳米管在正丁醇中的定向分散[J]. 天津工业大学学报,2020,39(4):15-19.

DU R H, YAN W, DU C L, et al. Dispersion and orientation of carbon nanotubes in n-butanol under external electric field[J]. Journal of Tiangong University,2020,39(4):15-19.

[41]MUBARAK N M, ABDULLAH E C, JAYAKUMAR N S, et al. An overview on methods for the production of carbon nanotubes[J]. Journal of Industrial and Engineering Chemistry,2014,20(4):1186-1197.

[42]EBBESEN T W, AJAYAN P M. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358(6383):220-222.

[43]GUO T, NIKOLAEV P, THESS A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chemical Physics Letters,1995,243(1/2):49-54.

[44]HOU P-X, ZHANG F, ZHANG L, et al. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications [J]. Advanced Functional Materials,2022,32(11): 210854.

[45]LEE S H, PARK J, PARK J H, et al. Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity[J]. Carbon,2021,173:901-909.

[46]GLEASON K K. Nanoscale control by chemically vapour-deposited polymers[J]. Nature Reviews Physics,2020,2:347-364.

[47]YANG F, WANG M, ZHANG D Q, et al. Chirality pure carbon nanotubes: growth, sorting, and characterization[J].Chemical Reviews,2020,120(5):2693-2758.

[48]AHMAD M, SILVA S R P. Low temperature growth of carbon nanotubes: a review[J]. Carbon,2020,158:24-44.

[49]ZHANG F, JIA Z R, ZHOU J X, et al. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption[J]. Chemical Engineering Journal,2022,450:138205.

[50]WANG X, DONG A R, HU Y, et al. A review of recent work on using metal-organic frameworks to grow carbon nanotubes[J]. Chemical Communications,2020,56(74):10809-10823.

[51]GUO L, ZHU M Y, HE Z Y, et al. One-pot hydrothermal synthesized nitrogen and sulfur codoped carbon dots for acid corrosion inhibition of Q235 steel[J]. Langmuir,2022,38(13):3984-3992.

[52]YU S J, DONG X Y, ZHAO P, et al. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose[J]. Nature Communications,2022,13(1):3616.

[53]YAN Y B, MIAO J W, YANG Z H, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews,2015,44(10):3295-3346.

[54]YARDIMCI A I, YAGMURCUKARDES N. Synthesis methods of carbon nanotube[M]. Cham: Springer,2022:25-56.

[55]GROSSIORD N, REGEV O, LOOS J, et al. Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy[J]. Analytical Chemistry,2005,77(16):5135-5139.

[56]RYABENKO A G, DOROFEEVA T V, ZVEREVA G I. UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Vander-Waals SWNT/SWNT interaction. verification of the SWNT content measurements by absorption spectroscopy[J]. Carbon,2004,42(8/9):1523-1535.

[57]ISLAM M F, ROJAS E, BERGEY D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters,2003,3(2):269-273.

[58]SINGH A P, GUPTA B K, MISHRA M, et al. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties[J]. Carbon,2013,56:86-96.

[59]SANCHEZ F, INCE C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites[J]. Composites Science and Technology,2009,69(7/8):1310-1318.

[60]SHEN K, CURRAN S, XU H F, et al. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-Raman spectroscopy study[J]. The Journal of Physical Chemistry B,2005,109(10):4455-4463.

[61]HIROI T, ATA S, SHIBAYAMA M. Transitions of aggregation states for concentrated carbon nanotube dispersion[J]. The Journal of Physical Chemistry C,2016,120(10):5776-5782.

[62]KATO Y, MORIMOTO T, KOBASHI K, et al. Quantitative method for analyzing dendritic carbon nanotube agglomerates in dispersions using differential centrifugal sedimentation[J]. The Journal of Physical Chemistry C,2019,123(34):21252-21256.

[63]KING S, CASTALDELLI E, MCCAFFTERTY L, et al. Micro-centrifugal technique for improved assessment and optimization of nanomaterial dispersions: the case for carbon nanotubes[J]. ACS Applied Nano Materials,2018,1(11):6217-6225.