史振宇1, 刘晓文2, 宋来聪2, 李 永2, 段宁民2, 王继来2, 张成鹏2
1. 河北工业大学 机械工程学院, 省部共建电工设备可靠性与智能化国家重点实验室, 天津 300130;2. 山东大学 机械工程学院, 高效洁净机械制造教育部重点实验室,山东 济南 250061
引用格式:
史振宇, 刘晓文, 宋来聪, 等. 航空发动机应用领域粉末高温合金的研究进展[J]. 中国粉体技术, 2025, 31(1): 47-61.
SHI Zhenyu, LIU Xiaowen, SONG Laicong, et al. Research progress of powder metallurgy superalloy in aero engine applications[J]. China Powder Science and Technology, 2025, 31(1): 47−61.
DOI:10.13732/j.issn.1008-5548.2025.01.005
收稿日期: 2024-07-12, 修回日期: 2024-09-10, 上线日期: 2024-10-16。
基金项目: 国家重点研发计划项目, 编号: 2022YFB3401900; 国家自然科学基金项目, 编号: U21A20134;山东省自然科学基金项目,
编号: ZR2022YQ48。
第一作者简介: 史振宇(1984—), 女, 教授, 博士, 博士生导师,教育部长江学者奖励计划青年学者, 研究方向为高温合金制备及高性
能加工技术研究。E-mail:zyshi@hebut. edu. cn。
摘要:【 目的】 延长航空发动机涡轮盘等关键部件的使用寿命,对粉末高温合金的材料设计和制备工艺等方面的研究进
展进行分析和总结。【 研究现状】 针对近年来国内外航空发动机涡轮盘等关键部件主要材料的粉末高温合金,综述多种
类型的粉末高温合金的元素组成及制备工艺,概括碳、 钽、 铪、 硼、 锆、 钴、 钛、 稀土元素等微量元素对粉末高温合金性
能的影响,总结热等静压、 热挤压、 粉末注射成型、 增材制造等制备工艺对粉末高温合金性能的影响。【 结论与展望】 在材料设计方面,应优化粉末高温合金元素组成,探索添加更多高性能元素,制备更耐高温、 耐氧化、 力学性能优异、 服
役寿命长的粉末高温合金; 在制备工艺方面,优化热等静压及热挤压工艺参数,继续探索完善粉末注射成型、 增材制造
工艺。
关键词: 粉末高温合金; 微量元素; 热等静压工艺; 热挤压工艺
Abstract
Significance To enhance the service life of critical components such as turbine disks in aero engines, this paper summarizes and analyzes the research progress on material design and preparation techniques for powder metallurgy superalloys. The effects of trace elements, including carbon(C), tantalum(Ta), hafnium(Hf), boron(B), zirconium(Zr), cobalt( Co), titanium(Ti), and rare earth elements, as well as their dosages, on the properties of powder metallurgy superalloys are reviewed. Furthermore, the impact of preparation techniques, such as hot isostatic pressing(HIP), hot extrusion, powder injection molding (PIM), and additive manufacturing(AM), along with their process parameters, on the properties of powder metallurgy superalloys is summarized.
Progress The addition of trace elements such as C, Ta, Hf, B, Zr, Co, Ti, and rare earth elements can significantly impact the microstructure, mechanical strength, friction and wear resistance, and service life of powder metallurgy superalloys. The content of these trace elements is also a crucial factor. For instance, an appropriate amount of C can facilitate the formation of carbides, reduce grain size, and thereby enhance the microstructure and mechanical properties of powder metallurgy superalloys. However, excessive C can lead to the formation of numerous and large-sized carbides, which can deteriorate the interface bonding, making it prone to microcracks and ultimately reducing the alloy’s performance. Similarly, a moderate amount of Ta can improve the thermal conductivity and oxidation resistance of powder metallurgy superalloys, while an appropriate level of Hf can enhance mechanical properties by influencing the phase transformation behavior. B improves the high-temperature durability of the alloy by segregating at grain boundaries and forming borides. Zr, by segregating at grain boundaries and promoting carbide stability, reduces defects and enhances the thermal strength of the alloy. The introduction of Co and Ti enhances the mechanical properties of powder metallurgy superalloys. Furthermore, a suitable amount of Sc( a rare earth element) can significantly improve the tensile properties of powder metallurgy superalloys. In summary, to achieve powder metallurgy superalloys with superior performance, it is essential to carefully select the types and contents of trace elements to be added. The commonly used preparation techniques for powder metallurgy superalloys are HIP and hot extrusion. The adoption of HIP in the preparation of powder metallurgy superalloys can effectively mitigate internal defects such as porosity, achieving better pressing and molding effects. It can also improve the microstructural characteristics, prior particle boundary (PPB) defects, mechanical properties, and fatigue performance of the alloy. The hot extrusion process optimizes the material’s microstructure and enhances the alloy’s mechanical properties. During the preparation of powder metallurgy superalloys, both HIP parameters and hot extrusion process parameters significantly impact the alloy’s performance. For instance, increasing the HIP treatment temperature can significantly reduce the PPB within the powder metallurgy superalloy. When the extrusion temperature, extrusion ratio, and extrusion speed during hot extrusion are increased, the dynamic recrystallization of the alloy becomes more complete. However, excessively high extrusion temperatures, ratios, and speeds can lead to a significant increase in grain size, which is detrimental to subsequent processing and forming. In recent years, AM and PIM processes have also become increasingly prevalent. By adjusting the injection speed in the PIM process, the mechanical properties of powder metallurgy superalloys can be significantly influenced. Similarly, both the temperature and forming direction in the AM process affect the material’s tensile properties. In conclusion, it is crucial to select appropriate process types and parameters for the preparation of powder metallurgy superalloys.
Conclusions and Prospects Regarding powder metallurgy superalloys, although the research on their elemental composition and preparation processes is now relatively advanced, the demanding service conditions faced by critical aerospace components such as turbine disks and turbine shafts necessitate further improvements. In the future, emphasis will be placed on the optimization of their composition, innovation in processing techniques, and precise control of microstructure to enhance their overall performance. From the aspect of material design, the elemental composition of powder metallurgy superalloys can be optimized incorporating more high-performance elements, producing powder metallurgy superalloys that exhibit greater high-temperature resistance, oxidation resistance, superior mechanical properties, and prolonged service life. Regarding prepa⁃ ration processes, parameters for HIP and hot extrusion should be optimized, and a combined approach utilizing both HIP and hot extrusion should be adopted for the preparation of powder metallurgy superalloys. Additionally, efforts should continue to refine PIM and AM processes, while also exploring novel, efficient, and high-quality methods for the preparation of powder metallurgy superalloys.
Keywords: powder metallurgy superalloys; trace element; hot isostatic pressing process; hot extrusion process
参考文献(References)
[1]申秀丽, 齐晓东, 王荣桥, 等. 航空发动机枞树形榫头/榫槽结构形状优化[J]. 工程力学, 2011, 28(12): 231-237.
SHEN X L, QI X D, WANG R Q, et al. Shape optimization of aero engine fir-tree tenon/mortise structure[J]. Engineering
Mechanics, 2011, 28(12): 231-237.
[2]张义文, 刘建涛. 粉末高温合金研究进展[J]. 中国材料进展, 2013, 32(1): 1-11.
ZHANG Y W, LIU J T. Development in powder metallurgy superalloy[J]. Materials China, 2013, 32(1): 1-11.
[3]赵勇铭, 宋迎东. 夹杂对粉末高温合金裂纹扩展寿命的影响[J]. 航空动力学报, 2005, 20(5): 772-777.
ZHAO Y M, SONG Y D. Influence of inclusions on crack growth life of powder metallurgy[J]. Journal of Aerospace Power,2005, 20(5): 772-777.
[4]吕震宙, 刘成立, 徐友良. 概率分析方法在粉末冶金涡轮盘疲劳蠕变寿命预测中的应用[J]. 航空发动机, 2005,31(3): 27-29.
LYU Z Z, LIU C L, XU Y L. Application of probability analysis in creep/fatigue life prediction of powder metallurgy turbine
disk[J]. Aeroengine, 2005, 31(3): 27-29.
[5]周磊, 汪煜, 邹金文. C元素对FGH96粉末高温合金显微组织和力学性能的影响[J]. 粉末冶金技术, 2017, 35(1):46-52.
ZHOU L, WANG Y, ZOU J W. Effect of carbon content on the microstructure and mechanical properties of powder metallurgy
superalloy FGH96[J]. Powder Metallurgy Technology, 2017, 35(1): 46-52.
[6]刘英浩, 肖旋, 刘梓童, 等. 碳元素对一种高温合金组织和性能的影响[J]. 沈阳理工大学学报, 2022, 41(2): 59-64,81.
LIU Y H, XIAO X, LIU Z T, et al. Effect of carbon on microstructure and properties of a superalloy[J]. Journal of Shenyang
Ligong University, 2022, 41(2): 59-64, 81.
[7]孟烁, 吕宏军, 姚草根, 等. 碳含量对FGH4169合金组织的影响[J]. 宇航材料工艺, 2016, 46(6): 59-63.
MENG S, LYU H J, YAO C G, et al. Effect of carbon content on microstructure of FGH4169 alloy[J]. Aerospace Materials
& Technology, 2016, 46(6): 59-63.
[8]乔雪璎, 王延庆, 蒙肇斌, 等. 碳含量对GH4199合金拉伸、持久性能及组织的影响[J]. 材料与冶金学报, 2004, 3(1):62-66.
QIAO X Y, WANG Y Q, MENG Z B, et al. Effects of the carbon content on the tensile properties, stress rupture properties
and microstructure of superalloy GH4199[J]. Journal of Materials and Metallurgy, 2004, 3(1): 62-66.
[9]ZHENG W J, WEI X P, SONG Z G, et al. Effects of carbon content on mechanical properties of inconel 718 alloy[J]. Journal
of Iron and Steel Research, International, 2015, 22(1): 78-83.
[10]DODANGEH S, SHAHRI F, ABBASI S M. The effects of carbon content on the microstructure and 650 ℃ tensile properties of incoloy 901 superalloy[J]. High Temperature Materials and Processes, 2015, 34(8): 821-826.
[11]刘从庆, 肖旋, 郭永安, 等 . 碳对高温合金 DZ417 定向凝固组织及持久性能的影响规律[J]. 沈阳理工大学学报, 2017, 36(5): 73-78.
LIU C Q, XIAO X, GUO Y A, et al. Effect of carbon on the microstructure and rupture properties of DZ417G during directionally
solidified of Ni-based superalloy[J]. Journal of Shenyang Ligong University, 2017, 36(5): 73-78.
[12]KUO T Y, CHIN W H, CHIEN C S, et al. Mechanical and biological properties of graded porous tantalum coatings
deposited on titanium alloy implants by vacuum plasma spraying[J]. Surface and Coatings Technology, 2019, 372: 399-409.
[13]RAHMATI B, SARHAN A A D, ZALNEZHAD E, et al. Development of tantalum oxide( Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility[J]. Ceramics International, 2016, 42(1):466-480.
[14]BERMÚDEZ M D, CARRIÓN F J, MARTÍNEZ-NICOLÁS G, et al. Erosion-corrosion of stainless steels, titanium, tantalum and zirconium[J]. Wear, 2005, 258(1/2/3/4): 693-700.
[15]GAO S, HOU J S, YANG F, et al. Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700 ℃[J]. Journal of Alloys and Compounds, 2017, 729: 903-913.
[16]来永军, 宁礼奎, 赵岭, 等. Ta、 Co对新型高强抗热腐蚀镍基单晶高温合金组织稳定性的影响[J]. 稀有金属材料与
工程, 2024, 53(3): 748-756.
LAI Y J, NING L K, ZHAO L, et al. Effects of Ta and Co on microstructural stability of a novel high-strength, high-temperature,corrosion-resistant nickel-based single crystal alloy[J]. Rare Metal Materials and Engineering, 2024, 53(3): 748-756.
[17]王志成, 王浩, 黄海亮, 等. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响[J]. 材料研究学报, 2019, 33(5): 331-337.
WANG Z C, WANG H, HUANG H L, et al. Effect of Ta on high temperature tensile properties of advanced Ni-based Powder
metallurgy superalloys[J]. Chinese Journal of Materials Research, 2019, 33(5): 331-337.
[18]杨志昆, 王浩, 张义文, 等. Ta含量对镍基粉末高温合金高温氧化性能的影响[J]. 稀有金属材料与工程, 2021, 50(9):3233-3241.
YANG Z K, WANG H, ZHANG Y W, et al. Effect of Ta content on high temperature oxidation performance of nickel-based
PM superalloys[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3233-3241.
[19]WANG H C, LIU J Y, LEI S Y, et al. Effects of Ta and Y additions on the high temperature oxidation mechanisms of
Ni-10Al alloy at 1 100 ℃[J]. Vacuum, 2023, 213: 112074.
[20]ZHAO S L, LIU S G, XUE Y J, et al. Microstructure and properties of monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings
deposited on biomedical Ti-6Al-4V alloy by magnetron sputtering[J]. Coatings, 2023, 13(7): 1234.
[21]GUO R P, XIONG G F, LIU J R, et al. Tribological behavior of Ti-Al-Nb alloy with different Ta additions for high temperature
applications[J]. Materials Letters, 2023, 330: 133324.
[22]DUHL D N, SULLIVAN C P. Some effects of hafnium additions on the mechanical properties of a columnar-grained nickelbase
superalloy[J]. JOM, 1971, 23(7): 38-40.
[23]KOTVAL P S, VENABLES J D, CALDER R W. The role of hafnium in modifying the microstructure of cast nickel-base
superalloys[J]. Metallurgical Transactions, 1972, 3(2): 457-462.[24]夏天, 张义文, 迟悦, 等. Hf和Zr含量对FGH96合金平衡相及PPB的影响[J]. 材料热处理学报, 2013, 34(8): 60-67.
XIA T, ZHANG Y W, CHI Y, et al. Effect of content of Hf and Zr on equilibrium phase and PPB in FGH96 P/M superalloy[J].
Transactions of Materials and Heat Treatment, 2013, 34(8): 60-67.
[25]宋晓云, 李岩, 李树索. Hf对Ni-Ti-Al合金高温变形行为影响[J]. 稀有金属材料与工程, 2012, 41(10): 1735-1740.
SONG X Y, LI Y, LI S S. Effect of Hf addition on the high-temperature deformation behavior of Ni-Ti-Al alloys[J]. Rare
Metal Materials and Engineering, 2012, 41(10): 1735-1740.
[26]殷亮, 胡聘聘, 李青, 等. Hf对DZ466合金热裂倾向性及力学性能影响[J]. 兵器材料科学与工程, 2020, 43(5):26-30.
YIN L, HU P P, LI Q, et al. Effects of Hf on thermal cracking tendency and mechanical properties of DZ466 alloy[J].
Ordnance Material Science and Engineering, 2020, 43(5): 26-30.
[27]侯介山, 丛培娟, 周兰章, 等 . Hf对抗热腐蚀镍基高温合金微观组织和力学性能的影响[J]. 中国有色金属学报, 2011, 21(5): 945-953.
HOU J S, CONG P J, ZHOU L Z, et al. Effect of Hf on microstructure and mechanical behavior of hot corrosion resistant
Ni-based superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 945-953.
[28]縢剑威. Co、 Ti添加对粉末冶金Ni-Cr-W基高温合金组织及性能的影响[D]. 长沙: 中南大学, 2022.
TENG J W. The effect of Co and Ti addition on the microstructure and properties of Ni-Cr-W based high temperature alloy
in powder metallurgy[D]. Changsha: Central South University, 2022.
[29]叶林. 钪元素对粉末高温合金组织与力学性能的影响[D]. 长沙: 中南大学, 2023.
YE L. Effect of scandium element on the microstructure and mechanical properties of powder high-temperature alloys[D].
Changsha: Central South University, 2023.
[30]石英男, 孙少斌, 曲敬龙, 等. 粉末高温合金热挤压工艺研究进展[J]. 粉末冶金工业, 2024, 34(1): 124-133.
SHI Y N, SUN S B, QU J L, et al. Research progress on hot extrusion process of P/M superalloy[J]. Powder Metallurgy
Industry, 2024, 34(1): 124-133.
[31]季晨昊, 郎利辉, 黄西娜, 等. Ti6Al4V合金粉末高温高压成形过程中粉固界面及其耦合变形研究[J]. 中南大学学
报(自然科学版), 2019, 50(1): 29-37.
[46]PANDIAN K, NEIKTER M, BAHBOU F, et al. Fatigue behavior of low-temperature hot isostatic pressed electron beam
powder bed fusion manufactured Ti-6Al-4 V[J]. Journal of Alloys and Compounds, 2023, 962: 171086.
[47]KALETSCH A, QIN S Y, BROECKMANN C. Influence of different build orientations and heat treatments on the creep
properties of inconel 718 produced by PBF-LB[J]. Materials, 2023, 16(11): 4087.
[48]宋晓俊, 王超渊, 汪煜, 等. 挤压态镍基粉末高温合金微观组织分析[J]. 锻压技术, 2020, 45(12): 195-202.
SONG X J, WANG C Y, WANG Y, et al. Microstructure analysis on extruded nickel-based powder superalloy[J]. Forging
& Stamping Technology, 2020, 45(12): 195-202.
[49]刘趁意, 王淑云, 李付国, 等. 粉末高温合金挤压变形组织及变形机理研究[J]. 锻压装备与制造技术, 2009, 44(1):84-87.
LIU C Y, WANG S Y, LI F G, et al. The procedure and mechanics research of extrusion deformation for FGH96 alloy[J].
China Metalforming Equipment & Manufacturing Technology, 2009, 44(1): 84-87.
[50]王超渊, 宋晓俊, 冯业飞, 等. 挤压工艺参数对FGH96合金棒材显微组织的影响[J]. 锻压技术, 2021, 46(5): 131-136.
WANG C Y, SONG X J, FENG Y F, et al. Influence of extrusion process parameters on microstructure of FGH96 alloy bar[J]. Forging & Stamping Technology, 2021, 46(5): 131-136.
[51]何国爱, 杨川, 刘锋, 等. 热挤压对粉末冶金PM-0002镍基高温合金组织及热变形行为的影响[J]. 机械工程材料, 2016, 40(4): 65-70.
HE G A, YANG C, LIU F, et al. Effects of hot extrusion on microstructures and hot deformation behavior of powder metallurgy
Ni-base superalloy PM-0002[J]. Materials for Mechanical Engineering, 2016, 40(4): 65-70.
[52]屈亚龙, 李明骜, 周涛, 等. 注射速度对粉末注射成形Fe-4Ni合金组织性能影响[J]. 特种铸造及有色合金, 2023,43(3): 379-384.
QU Y L, LI M W, ZHOU T, et al. The effect of injection speed on the microstructure and properties of Fe-4Ni alloy by powder
injection molding[J]. Special Casting and Nonferrous Alloys, 2023, 43(3): 379-384.
[53]路新, 刘程程, 曲选辉. 钛及钛合金粉末注射成形技术研究进展[J]. 粉末冶金技术, 2013, 31(2): 139-144, 148.
LU X, LIU C C, QU X H. Research progress on powder injection molding technology of titanium and titanium alloys[J].
Powder Metallurgy Technology, 2013, 31(2): 139-144, 148.
[54]齐世文, 荣鹏, 黄丹, 等. 激光粉末床熔融增材制造铝合金的室温和高温力学性能研究[J]. 中国激光, 2022, 49(8):7-17.
QI S W,
RONG P, HUANG D, et al. Study on room temperature and high temperature mechanical properties of aluminum
alloy produced by laser powder bed melting additive manufacturing[J]. China Laser, 2022, 49(8): 7-17.