徐骉, 张皖佳, 周子航, 陆晓庆, 李娇, 潘桂龙, 娄悦
南京理工大学 化学与化工学院, 江苏 南京 210094
引用格式:
徐骉, 张皖佳, 周子航, 等 . 热电金属有机框架和共价有机框架材料的研究进展[J]. 中国粉体技术, 2025, 31(1): 62-74.
XU Biao, ZHANG Wanjia, ZHOU Zihang, et al. Research progress on thermoelectric metalorganic frameworks and covalent organic frameworks materials[J]. China Powder Science and Technology, 2025, 31(1): 62−74.
DOI:10.13732/j.issn.1008-5548.2025.01.006
收稿日期: 2024-07-07, 修回日期: 2024-10-10, 上线日期: 2024-10-18。基金项目: 国家自然科学基金项目,编号:22375093。
第一作者简介: 徐骉(1987—), 男, 教授, 博士, 博士生导师, 国家第十五批“海外高层次人才计划”, 研究方向为纳米热电材料的液相 合成。E-mail:xubiao@njust. edu. cn。
通信作者简介: 娄悦(1992—), 女, 副教授, 博士, 硕士生导师, 江苏省双创博士, 研究方向为纳米热电材料的合成。E-mail:louyue@njust.edu.cn。
摘要:【 目的】 提升金属有机框架(metal-organic frameworks,MOFs)、 共价有机框架(covalent organic frameworks,COFs)及 其复合材料的热电性能,总结 MOFs、 COFs在热电应用方面的研究成果,探讨 MOFs、 COFs改性和热电性能优化方法。 【研究现状】 决定材料热电性能的热电优值的优化须要在塞贝克系数、 电导率和热导率 3个参数之间进行权衡,增大塞 贝克系数通常能够提升热电优值,但可能会导致电导率减小,而增大电导率则可能使得塞贝克系数减小或热导率增大。 通过调控金属离子和配体官能团的类型、 引入具有氧化还原活性或本质导电性的客体分子,可以优化MOFs材料的塞贝 克系数和电导率,并通过增加散射中心来减小热导率。通过调整共价键和连接分子创建不同的电子特性以及化学掺杂, 形成电荷转移复合材料,从而改善COFs的导电性能。【 展望】 未来的研究须要针对MOFs电子与声子输运机制进行计算 与分析,为金属离子和有机连接体的合理选择提供依据;将理论研究与实验设计相结合,通过精确的分子设计制备周期 性长、 缺陷少、 取向好的COFs,促进质量输运和电荷转移,从而不断提高COFs的热电性能; 研发基于MOFs和COFs的柔 性热电器件,实现柔性热电器件在热电领域广泛应用。
关键词: 热电性能; 金属有机框架材料; 共价有机框架材料; 材料设计
Abstract
Significance This review summarizes the latest research progress on functional materials in the field of energy conversion, specifically focusing on metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and their composites. It discusses optimization strategies for the thermoelectric figure of merit (Z), a key parameter that determines the thermoelectric performance of materials, and summarizes the research achievements of MOFs and COFs in thermoelectric applications. The review also explores methods to optimize the thermoelectric properties of MOFs and COFs.
Progress Optimizing the Z value requires balancing three key parameters: the Seebeck coefficient, electrical conductivity, and thermal conductivity. Increasing the Seebeck coefficient generally enhances the Z value, but it can reduce electrical conductivity. Conversely, increasing electrical conductivity may decrease the Seebeck coefficient or increase thermal conductivity. By controlling the types of metal ions and ligand functional groups, and introducing guest molecules with redox activity or inherent conductivity, the Seebeck coefficient and electrical conductivity of MOFs can be optimized. Meanwhile, increasing scattering centers can reduce thermal conductivity. For COFs, improving conductivity can be achieved by adjusting covalent bonds and connecting molecules to create different electronic properties, or through chemical doping to form charge-transfer composites.
Conclusions and Prospects Despite the potential of MOFs and COFs materials, their thermoelectric performance still faces significant challenges due to their relatively low conductivity. The future development of MOFs, COFs, and their composites remains difficult. MOFs possess unique periodicity and porous structures, which help achieve ultra-low thermal conductivity. However, factors such as the size and valence of metal ions, pore size and distribution, structural rigidity, and the impact of guest molecules on thermal conductivity require systematic study. Therefore, calculations and analyses of the electron and phonon transport mechanisms in MOFs are needed to provide a basis for the rational selection of metal ions and organic linkers. Due to the challenges in synthesis and their inherently low conductivity, the thermoelectric properties of COFs have not yet been fully explored. Most studies focus either on the electrical or thermal conductivity of COFs, and much of the research still lack practical applications. Future studies should combine theoretical research with experimental design, using precise molecular design to prepare COFs with high periodicity, fewer defects, and better alignment. This would improve mass transport and charge transfer, continuously enhancing the thermoelectric performance of COFs. The ultimate goal of developing flexible thermoelectric devices based on MOFs and COFs is to enable their widespread applications in thermoelectric field.
Keywords: thermoelectric performance; metal-organic framework materials; covalent organic framework materials; material design
参考文献(References)
[1]HE G,LIN J,SIFUENTES F,et al. Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system[J]. Nature Communications, 2020, 11(1): 2486.
[2]LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2021, 3(2): 141-155.
[3]WAY R, IVES M C, MEALY P, et al. Empirically grounded technology forecasts and the energy transition[J]. Joule, 2022,6(9): 2057-2082.
[4]QU D W, LI X, WANG H F, et al. Assembly strategy and performance evaluation of flexible thermoelectric devices[J]. Advanced Science, 2019, 6(15): 1900584.
[5]LIU Z X, CHEN G M. Advancing flexible thermoelectric devices with polymer composites[J]. Advanced Materials Technologies, 2020, 5(7): 2000049.
[6]DENG L, ZHANG Y C, WEI S S, et al. Highly foldable and flexible films of PEDOT: PSS/Xuan paper composites for thermoelectric applications[J]. Journal of Materials Chemistry A, 2021, 9(13): 8317-8324.
[7]ZHANG Y C, ZHANG Q C, CHEN G M. Carbon and carbon composites for thermoelectric applications[J]. Carbon Energy,2020, 2(3): 408-436.
[8]TAN G J, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149.
[9]JIN Q, JIANG S, ZHAO Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 2019, 18(1): 62-68.
[10]ZHENG Z H, SHI X L, AO D W, et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film[J]. Nature Sustainability, 2023, 6: 180-191.
[11]WANG J J, ZHOU C J, YU Y, et al. Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects[J]. Nano Energy, 2021, 79: 105484.
[12]SUN Y X, QIN H X, ZHANG C L, et al. Sb2Te3 based alloy with high thermoelectric and mechanical performance for low temperature energy harvesting[J]. Nano Energy, 2023, 107: 108176.
[13]YANG L, CHEN Z G, HONG M, et al. N-type Bi-doped PbTe nanocubes with enhanced thermoelectric performance[J]. Nano Energy, 2017, 31: 105-112.
[14]JIA B H, HUANG Y, WANG Y, et al. Realizing high thermoelectric performance in non-nanostructured n-type PbTe[J].Energy & Environmental Science, 2022, 15(5): 1920-1929.
[15]BANIK A, BISWAS K. A game-changing strategy in SnSe thermoelectrics[J]. Joule, 2019, 3(3): 636-638.
[16]ZHAO L D, CHANG C, TAN G J, et al. SnSe: a remarkable new thermoelectric material[J]. Energy & Environmental Science, 2016, 9(10): 3044-3060.
[17]ZHOU H C, KITAGAWA S. Metal-organic frameworks( MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415- 5418.
[18]ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials[J]. Microporous and Mesoporous Materials, 2004, 73(1/2): 3-14.
[19]FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
[20]CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
[21]EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272.
[22]LOHSE M S, BEIN T. Covalent organic frameworks: structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553.
[23]HE Y P, SPATARU C D, LÉONARD F, et al. Two-dimensional metal-organic frameworks with high thermoelectric efficiency through metal ion selection[J]. Physical Chemistry Chemical Physics, 2017, 19(29): 19461-19467.
[24]PAKHIRA S, MENDOZA-CORTES J L. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials[J]. Physical Chemistry Chemical Physics, 2019, 21(17): 8785-8796.
[25]LIU Z L, LIU T J, SAVORY C N, et al. Controlling the thermoelectric properties of organometallic coordination polymers via ligand design[J]. Advanced Functional Materials, 2020, 30(32): 2003106.
[26]KUANG X F, CHEN S C, MENG L Y, et al. Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction[J]. Chemical Communications, 2019, 55(11): 1643-1646.
[27]QU L Y, IGUCHI H, TAKAISHI S, et al. Porous molecular conductor: electrochemical fabrication of through-space conduction pathways among linear coordination polymers[J]. Journal of the American Chemical Society, 2019, 141(17): 6802-6806.
[28]XIE L S, ALEXANDROV E V, SKORUPSKII G, et al. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks[J]. Chemical Science, 2019, 10(37): 8558-8565.
[29]WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction[J]. Angewandte Chemie (International Edition in English), 2019, 58(28): 9491-9495.
[30]LIN C C, HUANG Y C, USMAN M, et al. Zr-MOF/polyaniline composite films with exceptional Seebeck coefficient for thermoelectric material applications[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3400-3406.[31]LI Z Y, GUO Y, WANG X B, et al. Highly conductive PEDOT: PSS threaded HKUST-1 thin films[J]. Chemical Communications, 2018, 54(98): 13865-13868.
[32]JADHAV A, GUPTA K, NINAWE P, et al. Imparting multifunctionality by utilizing biporosity in a zirconium-based metal-organic framework[J]. Angewandte Chemie( International Edition in English), 2020, 59(6): 2215-2219.[33]OLORUNYOMI J F, DYETT B P, MURDOCH B J, et al. Simultaneous enhancement of electrical conductivity and porosity of a metal-organic framework toward thermoelectric applications[J]. Advanced Functional Materials, 2024: 2403644.
[34]KHAN Z U, EDBERG J, HAMEDI M M, et al. Thermoelectric polymers and their elastic aerogels[J]. Advanced Materials,2016, 28(22): 4556-4562.
[35]DENG T Q, YONG X, SHI W, et al. Beyond the Mahan-Sofo best thermoelectric strategy: high thermoelectric performance from directional π-conjugation in two-dimensional poly(tetrathienoanthracene)[J]. Journal of Materials Chemistry A, 2020,8(8): 4257-4262.
[36]NASALEVICH M A, VAN DER VEEN M, KAPTEIJN F, et al. Metal-organic frameworks as heterogeneous photocatalysts:advantages and challenges[J]. Cryst Eng Comm, 2014, 16(23): 4919-4926.
[37]YUSRAN Y, FANG Q R, VALTCHEV V. Electroactive covalent organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2020, 32(44): 2002038.
[38]ALLENDORF M D, DONG R H, FENG X L, et al. Electronic devices using open framework materials[J]. Chemical Reviews, 2020, 120(16): 8581-8640.
[39]SLACK G A. The thermal conductivity of nonmetallic crystals[J]. Solid State Physics, 1979, 34: 1-71.
[40]HUANG B L, MCGAUGHEY A J H, KAVIANY M. Thermal conductivity of metal-organic framework 5 (MOF-5): Part I, molecular dynamics simulations[J]. International Journal of Heat and Mass Transfer, 2007, 50(3/4): 393-404.
[41]ZHAO Y S, YANG L N, KONG L Y, et al. Ultralow thermal conductivity of single-crystalline porous silicon nanowires[J]. Advanced Functional Materials, 2017, 27(40): 1702824.
[42]ROMANO G, GROSSMAN J C. Toward phonon-boundary engineering in nanoporous materials[J]. Applied Physics Letters,2014, 105(3): 033116.
[43]BABAEI H, MCGAUGHEY A J H, WILMER C E. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks[J]. Chemical Science, 2017, 8(1): 583-589.[44]ERICKSON K J, LÉONARD F, STAVILA V, et al. Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity[J]. Advanced Materials, 2015, 27(22): 3453-3459.
[45]CALBO J, GOLOMB M J, WALSH A. Redox-active metal-organic frameworks for energy conversion and storage[J]. Journal of Materials Chemistry A, 2019, 7(28): 16571-16597.
[46]TALIN A A, CENTRONE A, FORD A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices[J]. Science, 2014, 343(6166): 66-69.
[47]SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angewandte Chemie (International Edition in English), 2016, 55(11): 3566-3579.
[48]XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8536-8580.
[49]SUN L, HENDON C H, PARK S S, et al. Is iron unique in promoting electrical conductivity in MOFs?[J]. Chemical Science, 2017, 8(6): 4450-4457.
[50]SUN L, HENDON C H, MINIER M A, et al. Million-fold electrical conductivity enhancement in Fe2 (DEBDC) versus Mn2(DEBDC)( E=S, O)[J]. Journal of the American Chemical Society, 2015, 137(19): 6164-6167.
[51]PATHAK A, SHEN J W, USMAN M, et al. Integration of a( —Cu—S—) n plane in a metal-organic framework affords high electrical conductivity[J]. Nature Communications, 2019, 10: 1721.
[52]SUN L, LIAO B L, SHEBERLA D, et al. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity[J]. Joule, 2017, 1(1): 168-177.
[53]HAIDER G, USMAN M, CHEN T P, et al. Electrically driven white light emission from intrinsic metal-organic framework[J]. ACS Nano, 2016, 10(9): 8366-8375.
[54]CHEN D S, XING H Z, SU Z M, et al. Electrical conductivity and electroluminescence of a new anthracene-based metal-organic framework with π-conjugated zigzag chains[J]. Chemical Communications, 2016, 52(10): 2019-2022.
[55]WU Z L, WANG C H, ZHAO B, et al. A semi-conductive copper-organic framework with two types of photocatalytic activity[J]. Angewandte Chemie( International Edition in English), 2016, 55(16): 4938-4942.
[56]PARK J G, AUBREY M L, OKTAWIEC J, et al. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1, 2, 3-triazolate)(2 BF4)[x J]. Journal of the American Chemical Society, 2018, 140(27): 8526-8534.
[57]SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515.
[58]FANG Q R, ZHUANG Z B, GU S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5: 4503.
[59]ZHANG G, TSUJIMOTO M, PACKWOOD D, et al. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach[J]. Journal of the American Chemical Society, 2018, 140(7): 2602-2609.[60]KANDAMBETH S, DEY K, BANERJEE R. Covalent organic frameworks: chemistry beyond the structure[J]. Journal of the American Chemical Society, 2019, 141(5): 1807-1822.
[61]WALLER P J, GÁNDARA F, YAGHI O M. Chemistry of covalent organic frameworks[J]. Accounts of Chemical Research, 2015, 48(12): 3053-3063.
[62]JIN E Q, ASADA M, XU Q, et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks[J]. Science, 2017, 357(6352): 673-676.
[63]YAN S C, GUAN X Y, LI H, et al. Three-dimensional salphen-based covalent-organic frameworks as catalytic antioxidants[J]. Journal of the American Chemical Society, 2019, 141(7): 2920-2924.
[64]GUAN X Y, CHEN F Q, FANG Q R, et al. Design and applications of three dimensional covalent organic frameworks[J]. Chemical Society Reviews, 2020, 49(5): 1357-1384.
[65]LI J, JING X C, LI Q Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chemical Society Reviews, 2020, 49(11): 3565-3604.
[66]CHATTERJEE A, SUN J M, RAWAT K S, et al. Exploring the charge storage dynamics in donor-acceptor covalent organic frameworks based supercapacitors by employing ionic liquid electrolyte[J]. Small, 2023, 19(46): e2303189.
[67]GIRI A, HOPKINS P E. Heat transfer mechanisms and tunable thermal conductivity anisotropy in two-dimensional covalent organic frameworks with adsorbed gases[J]. Nano Letters, 2021, 21(14): 6188-6193.
[68]RAHMAN M A, DIONNE C J, GIRI A. Pore size dictates anisotropic thermal conductivity of two-dimensional covalent organic frameworks with adsorbed gases[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21687-21695.
[69]CHUMAKOV Y, AKSAKAL F, DIMOGLO A, et al. First-principles study of thermoelectric properties of covalent organic frameworks[J]. Journal of Electronic Materials, 2016, 45(7): 3445-3452.
[70]YAN W, YU F, JIANG Y, et al. Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors[J]. Small Structures,2022, 3(10): 2200126.
[71]MA T R, GE F Y, KE S W, et al. Accessible tetrathiafulvalene moieties in a 3D covalent organic framework for enhanced near-infrared photo-thermal conversion and photo-electrical response[J]. Small, 2024, 20(14): 2308013.
[72]WANG L Y, DONG B, GE R L, et al. Fluorene-based two-dimensional covalent organic framework with thermoelectric properties through doping[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7108-7114.
[73]WANG M C, WANG M, LIN H H, et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping[J]. Journal of the American Chemical Society, 2020, 142(52): 21622-21627.
[74]JIN S B, SAKURAI T, KOWALCZYK T, et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts[J]. Chemistry, 2014, 20(45): 14608-14613.
[75]DING H M, LI Y H, HU H, et al. A tetrathiafulvalene-based electroactive covalent organic framework[J]. Chemistry-A European Journal, 2014, 20(45): 14614-14618.
[76]CAI S L, ZHANG Y B, PUN A B, et al. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework[J]. Chemical Science, 2014, 5(12): 4693-4700.
[77]MENG Z, STOLZ R M, MIRICA K A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity[J]. Journal of the American Chemical Society, 2019, 141(30): 11929-11937.
[78]NATH B, LI W H, HUANG J H, et al. A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I2 doping-enhanced photoconductivity[J]. Cryst Eng Comm, 2016, 18(23): 4259-4263.
[79]XU X Y, WANG S Z, YUE Y, et al. Semiconductive porphyrin-based covalent organic frameworks for sensitive near-infrared detection[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37427-37434.
[80]LAKSHMI V, LIU C H, RAO M R, et al. A two-dimensional poly(azatriangulene) covalent organic framework with semiconducting and paramagnetic states[J]. Journal of the American Chemical Society, 2020, 142(5): 2155-2160.
[81]LI H, CHANG J H, LI S S, et al. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity[J]. Journal of the American Chemical Society, 2019, 141(34): 13324-13329.